Il Ritorno Alla Luna: Prospettive, Collaborazioni E Piani Di Sviluppo

Total Page:16

File Type:pdf, Size:1020Kb

Il Ritorno Alla Luna: Prospettive, Collaborazioni E Piani Di Sviluppo LA COMUNITÀ INTERNAZIONALE Rivista Trimestrale della Società Italiana per l’Organizzazione Internazionale QUADERNO 17 Il ritorno alla Luna: Prospettive, collaborazioni e piani di sviluppo EDITORIALE SCIENTIFICA Napoli LA COMUNITÀ INTERNAZIONALE RIVISTA TRIMESTRALE DELLA SOCIETÀ ITALIANA PER L’ORGANIZZAZIONE INTERNAZIONALE QUADERNI (Nuova Serie) 17 COMITATO SCIENTIFICO Pietro Gargiulo, Cesare Imbriani, Giuseppe Nesi, Adolfo Pepe, Attila Tanzi SOCIETÀ ITALIANA PER L’ORGANIZZAZIONE INTERNAZIONALE IL RITORNO ALLA LUNA: PROSPETTIVE, COLLABORAZIONI E PIANI DI SVILUPPO EDITORIALE SCIENTIFICA Napoli Il presente Report è stato realizzato con il contributo dell’Unità di Analisi, Programmazione, Statistica e Documentazione Storica del Ministero degli Affari Esteri e della Cooperazione Internazionale, ai sensi dell’art. 23 bis del d.P.R. 18/1967. Le posizioni contenute nella presente pubblicazione sono espressione esclusivamente degli Autori e non rappresentano necessariamente le posizioni del Ministero degli Affari Esteri e della Cooperazione Internazionale. Proprietà letteraria riservata Copyright 2020 Editoriale Scientifica srl Via San Biagio dei Librai, 39 89138 - Napoli ISBN 978-88-9391-745-2 INDICE SEZIONE POLITICA E RELAZIONI INTERNAZIONALI È INIZIATA UNA NUOVA COMPETIZIONE NELLO SPAZIO? (con il coordinamento di Gabriella Arrigo) GIULIA COSTELLA, GIORGIO GARAGNANI, MARILENA MONTANARI, JAHJAH MUNZER MARIA FLORENCIA PAOLONI, REGINALDO PONTIROLLI INTRODUZIONE………………..………………….…...………………………………… 1 CAPITOLO 1 – Il programma spaziale lunare della NASA e la commercial partnership..3 CAPITOLO 2 – Altri programmi spaziali lunari…….…….………………..….……..….17 CAPITOLO 3 – I retroscena dello sviluppo tecnologico…………….……….…………..43 CAPITOLO 4 – La cooperazione internazionale come base per l’esplorazione lunare….53 CONCLUSIONI…………………………………….…..…….…………………………...65 SEZIONE GIURIDICO-ISTITUZIONALE IL RITORNO ALLA LUNA: QUALE MODELLO PER GLI ASPETTI GIURIDICI? (con il coordinamento di Sergio Marchisio e Viviana Iavicoli) ANNA CATERINO, GIANCARLO LA ROCCA, ARMANDO LUCIANO, GIANCARLO MELICCHIO INTRODUZIONE………………..………………...….…...………………………………69 CAPITOLO 1 – Il ritorno alla Luna: possibile interpretazione del modello giuridico dell’Outer Space Treaty (OST) alla luce del diritto romano.………….………………73 CAPITOLO 2 – L’Accordo sulla Luna del 1969. Un bilancio deludente?………..……...85 CAPITOLO 3 – Il regime giuridico della Convenzione di Montego Bay e del Trattato an- tartico: analogie e comparazione con il diritto spaziale internazionale……..…….….101 CAPITOLO 4 – Le legislazioni nazionali di Stati Uniti e Lussemburgo: caratteristiche e impatti sui privati e sulla competizione commerciale……………....………,,………113 CONCLUSIONI…………………………………….…..…….………………………….125 VI INDICE SEZIONE INDUSTRIALE E TECNICO-SCIENTIFICA PROSPETTIVE SCIENTIFICHE E PIANI DI SVILUPPO TECNOLOGICI DEL FUTURO RITORNO ALLA LUNA (con il coordinamento di Enrico Flamini, Roberto Somma e Armando Tempesta) FRANCESCA CASAMASSIMA, RICCARDO CATTANEO, NICO DALL’OGLIO, MASSIMI- LIANO DE MARCO, FEDERICO GIULIANI, ANDREA MONTIERI INTRODUZIONE………………..………………….…...……………………………….129 CAPITOLO 1 – Storia dell’esplorazione lunare……..………….…….….…….……….133 CAPITOLO 2 – Lezioni dal passato………….………...…….…….……..………..……151 CAPITOLO 3 – Il contesto geopolitico ed economico attuale……….………….……...165 CAPITOLO 4 – Le motivazioni del ritorno alla Luna………………………….……….179 CAPITOLO 5 – Architetture pubbliche e private…………………….………….……...195 CAPITOLO 6 – Rischi, minacce e nuove esplorazioni lunari……….……...….……….209 CONCLUSIONI…………………………………….…..…….………………………….227 BIBLIOGRAFIA…………………………………….………..…….……………………229 SITOGRAFIA………….…….………….………….…..…….…………………………236 SEZIONE SOCIO-ECONOMICA SPAZIO 3.0: APPROCCI DI NEW SPACE APPLICATI ALLO SVILUPPO DI UN NUOVO SPAZIO ECONOMICO LUNARE (con il coordinamento di Delfina Bertolotto) ROBERTO BERTACIN, MARCO FLORISSI, JONATHAN MORSIA, FRANCESCO PAGNOTTA, ANIELLO VIOLETTI INTRODUZIONE………………..………………….…...……………………………….239 CAPITOLO 1 – Esplorazione e colonizzazione della Luna.………….….….…….……245 CAPITOLO 2 – L’esperienza della ISS.………..…..……..…….……..……….…….....277 CAPITOLO 3 – Analisi, sfide, opportunità, ritorni/ricadute – analisi SWOT…..………291 CAPITOLO 4 – Concept posizionamento Italia…….….…..…….....….……….………303 CONCLUSIONI…………………………………….…..…….………………………….315 BIBLIOGRAFIA…………………………………….…..…….…………………………327 SEZIONE POLITICA E RELAZIONI INTERNAZIONALI * È INIZIATA UNA NUOVA COMPETIZIONE NELLO SPAZIO? GIULIA COSTELLA – GIORGIO GARAGNANI – MARILENA MONTANARI JAHJAH MUNZER – FLORENCIA PAOLONI – REGINALDO PONTIROLLI SOMMARIO: Introduzione. – Capitolo 1. Il programma spaziale lunare della NASA e la commercial partnership. – 1.1. Da Constellation ad Artemis. – 1.2. Il ruolo degli attori privati. – 1.2.1. La com- mercial partnership nel contesto del programma Artemis. – Capitolo 2. Altri programmi spaziali lunari. 2.1. Il Programma spaziale dell’ESA. – 2.1.1. Una strategia spaziale per l’Europa. – 2.1.2. Il Programma di esplorazione umana e robotica e l’E3P. – 2.1.3. Analisi del programma lunare dell’ESA. – 2.2. Il Programma spaziale russo. – 2.2.1. La strategia spaziale russa e la cooperazione internazionale per la Luna. 2.2.2. La Russia e l’Europa. 2.3. Programmi spaziali asiatici. 2.3.1. Il Programma spaziale cinese. – 2.3.2. Il Programma spaziale indiano. – 2.3.3. Il Programma spaziale giapponese. – 2.3.4. Alcune riflessioni sui programmi spaziali lunari asiatici. – 2.4. Il Programma spaziale di Israele. – Capitolo 3. I retroscena dello sviluppo tecnologico. 3.1. La strategia politica dietro il programma Apollo. 3.2. La tecnologia del programma Apollo. – 3.2.1. Gli impatti tec- nologici del programma Apollo. – 3.3. La strategia tecnologica del programma Artemis. – 3.4. La space dominance degli Stati Uniti e la competizione con la Cina. – Capitolo 4. La cooperazione internazionale come base per l’esplorazione lunare. – 4.1. Strumenti di cooperazione internazionale bilaterale. – 4.2. Strumenti di cooperazione internazionale multilaterale. – 4.2.1. L’International Space Exploration Coordination Group (ISECG). – 4.2.2. L’International Space Exploration Forum (ISEF). – 4.2.3. Il COPUOS e l’Action Team sull’Esplorazione Spaziale. – 4.3. Quale governance per l’esplorazione lunare? – 4.3.1. L’Outer Space Treaty (OST). – 4.3.2. Il Moon Agreement. – Conclusioni. Introduzione.- Fin dal lancio del primo satellite artificiale, riuscire a raggiungere la Luna diventò una delle sfide principali sulla quale si sono misurate le due grandi potenze spaziali, USA e URSS, antagoni- ste durante la Guerra Fredda. La superiorità tecnologica statunitense, unita ad una serie di sfortunati eventi avvenuti in concomitanza nel- l’Unione Sovietica, portò gli Stati Uniti a conquistare il ruolo di leader indiscusso nel settore spaziale. Oggi, a distanza di cinquant’an- ni dall’allunaggio del 20 luglio 1969, il panorama geopolitico è cambiato radicalmente: il bipolarismo della Guerra Fredda ha lasciato spazio al multipolarismo che caratterizza l’attuale Comunità spaziale internazionale. Con il nuovo Millennio è rinato l’interesse di tornare sulla Luna, sia attraverso missioni robotiche sia, recentemente, anche con gli uomini, come annunciato dal Vice Presidente degli Stati Uniti, Mike Pence, il 26 marzo 2019, con scadenza ravvicinata al 2024. Il ventaglio degli attori spaziali negli ultimi decenni si è allargato: * Il presente lavoro è stato redatto sotto la supervisione della Dottoressa Gabriella Arrigo. 2 QUADERNI “LA COMUNITÀ INTERNAZIONALE” sebbene gli Stati siano ancora i principali promotori e finanziatori delle missioni spaziali, anche i privati stanno gareggiando per acquisire un ruolo sempre maggiore sullo scenario dell’esplorazione spaziale. Il mondo dell’imprenditoria privata sta offrendo, soprattutto negli Stati Uniti, il proprio sostanziale supporto per favorire il ritorno dell’uomo sulla Luna. Per quanto riguarda il settore pubblico, siamo di fronte ad una sorta di “rinascimento lunare”1: c’è stato, infatti, un moltiplicarsi di agenzie spaziali nazionali che vogliono studiare la Luna, sia con missioni in orbita, che al suolo. Ma chi sono gli Stati che, anche prima dell’annuncio di Pence, avevano già dichiarato di voler andare sulla Luna? Cos’è che ha spinto l’Amministrazione Trump ad accelerare i tempi di realizzazione del programma Artemis? E perché tornare sulla Luna dopo così tanto tempo? Quali e per chi sono i vantaggi? Il presente lavoro ha l’obiettivo di analizzare lo stato dell’arte in seno alla Comunità spaziale internazionale e provare ad avanzare risposte ad alcuni di questi quesiti. Si analizzerà, pertanto, il programma lunare statunitense e le partnership commerciali. Si passeranno, poi, in rassegna i diversi programmi spaziali lunari nazionali, in particolare, di Russia, Cina, Giappone, India, dell’Agen- zia Spaziale Europea (ESA) e di Israele. Il nostro intento sarà quello di comprendere la logica che porta i differenti Paesi a scegliere di investire nel settore spaziale, in generale e sulla Luna, in particolare. Il terzo capitolo porrà l’accento sui retroscena strategici che stanno alla base dello sviluppo tecnologico dell’esplorazione spaziale, evidenziando l’importanza e il valore geopolitico degli stessi per i Paesi che, in tal modo, possono affermare la propria indipendenza tecnologica e, ove possibile, un accesso autonomo allo spazio. Il lavoro si concluderà con l’analisi di alcuni degli strumenti di cooperazione internazionale ad oggi esistenti in materia di esplora- zione spaziale, per comprendere se una space governance
Recommended publications
  • Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Name Spacecraft / 1958 “Pioneer” Mass[Luna] No
    Deep Space Chronicle: Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Spacecraft / Mass Launch Date / Launch Place / Launch Vehicle / Nation / Design & Objective Outcome* Name No. Time Pad No. Organization Operation 1958 “Pioneer” Able 1 38 kg 08-17-58 / 12:18 ETR / 17A Thor-Able I / 127 U.S. AFBMD lunar orbit U [Luna] Ye-1 / 1 c. 360 kg 09-23-58 / 09:03:23 NIIP-5 / 1 Luna / B1-3 USSR OKB-1 lunar impact U Pioneer Able 2 38.3 kg 10-11-58 / 08:42:13 ETR / 17A Thor-Able I / 130 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 2 c. 360 kg 10-11-58 / 23:41:58 NIIP-5 / 1 Luna / B1-4 USSR OKB-1 lunar impact U Pioneer 2 Able 3 39.6 kg 11-08-58 / 07:30 ETR / 17A Thor-Able I / 129 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 3 c. 360 kg 12-04-58 / 18:18:44 NIIP-5 / 1 Luna / B1-5 USSR OKB-1 lunar impact U Pioneer 3 - 5.87 kg 12-06-58 / 05:44:52 ETR / 5 Juno II / AM-11 U.S. NASA / ABMA lunar flyby U 1959 Luna 1 Ye-1 / 4 361.3 kg 01-02-59 / 16:41:21 NIIP-5 / 1 Luna / B1-6 USSR OKB-1 lunar impact P Master Table of All Deep Space, Lunar, andPlanetary Probes1958–2000 ofAllDeepSpace,Lunar, Master Table Pioneer 4 - 6.1 kg 03-03-59 / 05:10:45 ETR / 5 Juno II / AM-14 U.S.
    [Show full text]
  • Low-Energy Lunar Trajectory Design
    LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 ii DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Titles in this Series Radiometric Tracking Techniques for Deep-Space Navigation Catherine L. Thornton and James S. Border Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation Theodore D. Moyer Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communication Marvin K. Simon Large Antennas of the Deep Space Network William A. Imbriale Antenna Arraying Techniques in the Deep Space Network David H. Rogstad, Alexander Mileant, and Timothy T. Pham Radio Occultations Using Earth Satellites: A Wave Theory Treatment William G. Melbourne Deep Space Optical Communications Hamid Hemmati, Editor Spaceborne Antennas for Planetary Exploration William A. Imbriale, Editor Autonomous Software-Defined Radio Receivers for Deep Space Applications Jon Hamkins and Marvin K. Simon, Editors Low-Noise Systems in the Deep Space Network Macgregor S. Reid, Editor Coupled-Oscillator Based Active-Array Antennas Ronald J. Pogorzelski and Apostolos Georgiadis Low-Energy Lunar Trajectory Design Jeffrey S. Parker and Rodney L. Anderson LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 iv Low-Energy Lunar Trajectory Design July 2013 Jeffrey Parker: I dedicate the majority of this book to my wife Jen, my best friend and greatest support throughout the development of this book and always.
    [Show full text]
  • The Lost Indian Chandrayaan 2 Lander Vikram and Rover Pragyaan Found Intact in Single Piece on the Moon
    ISSN (Online): 2350-0530 International Journal of Research -GRANTHAALAYAH ISSN (Print): 2394-3629 December 2020, Vol 8(12), 103 – 109 DOI: https://doi.org/10.29121/granthaalayah.v8.i12.2020.2608 THE LOST INDIAN CHANDRAYAAN 2 LANDER VIKRAM AND ROVER PRAGYAAN FOUND INTACT IN SINGLE PIECE ON THE MOON Jag Mohan Saxena 1 , H M Saxena *2 , Priyanka Saxena 3 1 Bldg. 1-E-19, Jai Narayan Vyas Nagar, Bikaner 334003, India *2 Geetanjali Aptts. 9FF, E Block, Rishi Nagar, Ludhiana 141001, India 3 Indian Institute of Technology, Jodhpur 342037, India DOI: https://doi.org/10.29121/granthaalayah.v8.i12.2020.2608 Article Type: Research Article ABSTRACT The Lunar Lander Vikram of the Moon Mission Chandrayaan 2 of the Article Citation: Jag Mohan Saxena, Indian Space Research Organization (ISRO) lost communication with the H M Saxena, and Priyanka Saxena. Lunar Orbiter and the mission control nearly 2.1 kms above the lunar (2020). THE LOST INDIAN surface during its landing on the Moon on 7th September, 2019. The exact CHANDRAYAAN 2 LANDER VIKRAM AND ROVER PRAGYAAN FOUND location and the sight of the lost lander and rover are still elusive. We INTACT IN SINGLE PIECE ON THE present here the exact location and first images of the lander Vikram and MOON. International Journal of rover Pragyaan sighted on the lunar surface. It is evident from the Research -GRANTHAALAYAH, processed images that the lander was intact and in single piece on landing 8(12), 103-109. away from the scheduled site and its ramp was deployed to successfully https://doi.org/10.29121/granthaa release the rover Pragyan on to the lunar surface.
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • Overview of Chandrayaan-1 PDS (Planetary Data System) Products
    Chandrayaan-1 PDS Data Products Archival Generation and Browse By Ajay Kumar Prashar HRDPD/SIPG Chandrayaan-1 SAC Data Processing Team Contents • ISDA (ISRO Science Data Archive) Overview • PDS (Planetary Data System) Overview • Mission & instrument Overview • Archive Process • Data Products Definitions • Data Products Archive Generation • Archive Organization : Mission & Instrument level • Visualizations of PDS Data Products (Ch1PDSViewer/NASAVIEW/USGS-ISIS) • Chandrayaan-1 Browse Application ISDA – Overview Central repository for all scientific and engineering data returned by ISRO’s planetary missions Established at Indian Space Science Data Centre (ISSDC) Bangalore - in 2008. ISDA archives data sets from following missions: Chandrayaan-1 Mars Orbiter Mission Astrosat Chandrayaan-2 (Future) ISDA adopted PDS as archive standard for generating mission & instrument specific data sets for the scientific user community ISDA provides international collaboration with IPDA (International Planetary Data Alliance) PDS - Overview Well known Archive standard for all the NASA planetary missions in the scientific user community. Adopted by ESA, JAXA and other space agencies across globe. Features of PDS Self structured, documented & Peer Review Data Sets Long-term access and usability of data ISRO had also adopted PDS3 for following missions Chandrayaan-1 Mars Orbiter Mission. ISRO will adopt PDS4 for Chandrayaan-2 and continue PDS4 for future planetary missions. PDS Home Page (http://pds.nasa.gov) Mission & Instruments – Overview Chandrayaan-1, India’s first mission to Moon, was launched successfully on 22 October 2008 from SDSC SHAR, Sriharikota. Spacecraft was orbiting around Moon at a height of 100 km from the lunar surface for chemical, mineralogical and photo-geologic mapping of the Moon. Spacecraft carried 11 scientific instruments built in India, USA, UK,Germany, Sweden and Bulgaria.
    [Show full text]
  • U.S. Human Space Flight Safety Record As of July 20, 2021
    U.S. Human Space Flight Safety Record (As of 20 July 2021) Launch Type Total # of Total # People Total # of Total # of People on Died or Human Space Catastrophic Space Flight Seriously Flights Failures6 Injured3 Orbital (Total) 9271 17 1664 3 Suborbital 2332 3 2135 2 (Total) Total 1160 20 379 5 § 460.45(c) An operator must inform each space flight participant of the safety record of all launch or reentry vehicles that have carried one or more persons on board, including both U.S. government and private sector vehicles. This information must include— (1) The total number of people who have been on a suborbital or orbital space flight and the total number of people who have died or been seriously injured on these flights; and (2) The total number of launches and reentries conducted with people on board and the number of catastrophic failures of those launches and reentries. Federal Aviation Administration AST Commercial Space Transportation Footnotes 1. People on orbital space flights include Mercury (Atlas) (4), Gemini (20), Apollo (36), Skylab (9), Space Shuttle (852), and Crew Dragon (6) a. Occupants are counted even if they flew on only the launch or reentry portion. The Space Shuttle launched 817 humans and picked up 35 humans from MIR and the International Space Station. b. Occupants are counted once reentry is complete. 2. People on suborbital space flights include X-15 (169), M2 (24), Mercury (Redstone) (2), SpaceShipOne (5), SpaceShipTwo (29), and New Shepard System (4) a. Only occupants on the rocket-powered space bound vehicles are counted per safety record criterion #11.
    [Show full text]
  • Space Policy Directive 1 New Shepard Flies Again 5
    BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S.
    [Show full text]
  • Astronomy News KW RASC FRIDAY JANUARY 8 2021
    Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals.
    [Show full text]
  • Indian Payload Capabilities for Space Missions
    INDIAN PAYLOAD CAPABILITIES FOR 13, Bangalore - SPACE MISSIONS July 11 A.S. Kiran Kumar Director Space Applications Centre International ASTROD Symposium, Ahmedabad th 5 Application-specific EO payloads IMS-1(2008) RISAT-1 (2012) MX/ HySI-T C-band SAR CARTOSAT-2/2A/2B RESOURCESAT-2 (2011) (2007/2009/2010) LISS 3/ LISS 4/AWiFS PAN RESOURCESAT-1 (2003) LISS 3/ LISS 4 AWiFS CARTOSAT-1 (2005) (Operational) STEREOPAN Megha-Tropiques (2011) TES(2001) MADRAS/SAPHIR/ScARaB/ Step& Stare ROSA PAN OCEANSAT-2 (2009) OCM/ SCAT/ROSA YOUTHSAT(2011) LiV HySI/RaBIT INSAT-3A (2003) KALPANA-1 (2002) VHRR, CCD VHRR Application-specific EO payloads GISAT MXVNIR/SWIR/TIR/HySI RISAT-3 RESOURCESAT-3A/3B/3C L-band SAR CARTOSAT-3 RESOURCESAT-2A LISS 3/LISS 4/AWiFS PAN LISS3/LISS4/AWiFS RESOURCESAT-3 LISS 3/LISS 4/ CARTOSAT-2C/2D AWiFS (Planned) PAN RISAT-1R C-band SAR SARAL Altimeter/ARGOS OCEANSAT-3 OCM , TIR GISAT MXVNIR/SWIR/ INSAT- 3D TIR/HySI Imager/Sounder EARTH OBSERVATION (LAND AND WATER) RESOURCESAT-1 IMS-1 RESOURCESAT-2 RISAT-1 RESOURCESAT-2A RESOURCESAT-3 RESOURCESAT-3A/3B/3C RISAT-3 GISAT RISAT-1R EARTH OBSERVATION (CARTOGRAPHY) TES CARTOSAT-1 CARTOSAT-2/2A/2B RISAT-1 CARTOSAT-2C/2D CARTOSAT-3 RISAT-3 RISAT-1R EARTH OBSERVATION (ATMOSPHERE & OCEAN) KALPANA-1 INSAT- 3A OCEANSAT-1 INSAT-3D OCEANSAT-2 YOUTHSAT GISAT MEGHA–TROPIQUES OCEANSAT-3 SARAL Current observation capabilities : Optical Payload Sensors in Spatial Res. Swath/ Radiometry Spectral bands Repetivity/ operation Coverage (km) revisit CCD 1 1 Km India & 10 bits 3 (B3, B4, B5) 4 times/ day surround.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • 50. Obletnica Pristanka Na Luni in Pomen Osvajanja Vesolja Za Geodezijo 50Th Anniversary of the Moon Landing and the Importance
    GEODETSKI VESTNIK | 63/4 | 50. OBLETNICA PRISTANKA 50TH ANNIVERSARY OF NA LUNI IN POMEN THE MOON LANDING AND OSVAJANJA VESOLJA ZA THE IMPORTANCE OF GEODEZIJO CONQUERING SPACE FOR GEODESY Sandi Berk STROKOVNE RAZPRAVE | PROFESSIONAL DISCUSSIONS RAZPRAVE STROKOVNE 1 UVOD Letos mineva petdeset let od prvega obiska človeka na edini Zemljini luni – Mesecu (v nadaljevanju kar: Luna). Ta »majhen korak za človeka, a velikanski skok za človeštvo« je bil storjen 20. julija 1969, ko sta Neil Armstrong in Edwin Aldrin v lunarnem modulu Eagle (tj. Orel) pristala poleg Malega zahodnega kraterja v Morju tišine (slika 1). Okrogla obletnica je priložnost, da se ozremo nazaj in osvežimo dogod- ke iz pionirskih časov osvajanja vesolja. Hkrati lahko osvetlimo pomen takratnih podvigov ter njihove učinke na tehnološki razvoj in tudi napredek geodezije. Slika 1: Armstrongova fotografija Aldrina ob nameščenem seizmografu; nad njim je reflektor za lasersko merjenje oddaljenosti od Zemlje, desno zgoraj pa je lunarni modul Eagle (vir: NASA, 2019). | 589 | | 63/4 | GEODETSKI VESTNIK Kje se sploh prične vesolje – kako visoko je treba poleteti? Mejo med Zemljino atmosfero in vesoljskim prostorom (angl. outer space) imenujemo Kármánova ločnica in je približno sto kilometrov nad površjem Zemlje. Nad to višino za letenje ne veljajo več zakoni aerodinamike, ampak je mogoče zgolj še letenje po zakonih balistike, torej na raketni pogon. Pomembna je tudi v pravnem smislu, saj se tu konča zračni prostor držav in začne veljati mednarodno vesoljsko pravo. Kot vemo, letijo potniška letala na višini približno deset kilometrov. Nedavni rekordni polet z jadralnim letalom je dosegel višino 23 kilometrov nad morjem, vendar s pomočjo stratosferskih zavetrnih valov, ki nastajajo zaradi izredno močnih zračnih tokov med visokimi gorskimi vrhovi Andov (Ebbesen Jensen, 2019).
    [Show full text]
  • 350 International Atlas of Lunar Exploration 8 January 1973
    :UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 350 [7428] 19.8.20073:28PM 350 International Atlas of Lunar Exploration 8 January 1973: Luna 21 and Lunokhod 2 (Soviet Union) The 4850 kg Luna 21 spacecraft was launched from Baikonur at 06:56 UT on a Proton booster, placed in a low Earth parking orbit and then put on a lunar trajec­ tory. Power problems required that the Lunokhod solar panel be opened in flight to augment power, and stowed again for the trajectory correction and orbit insertion burns and for landing. On 12 January Luna 21 entered a 90 km by 100 km lunar orbit inclined 60° to the equator. After a day in orbit the low point was reduced to 16 km, and on 15 January after 40 orbits the vehicle braked and dropped to just 750 m above the surface. Then the main thrusters slowed the descent, and at :UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 351 [7428] 19.8.20073:28PM Chronological sequence of missions and events 351 22 m a set of secondary thrusters took over until the After landing, Lunokhod 2 surveyed its surround­ spacecraft was only 1.5 meters high, when the thrusters ings. A rock partly blocked the west-facing ramp so the were shut off. Landing time was 23:35 UT. rover was driven east across a shallow crater, leaving the The site was in Le Monnier crater on the eastern edge lander at 01:14 UT on 16 January. It rested 30 m from of Mare Serenitatis, 180 km north of the Apollo 17 land­ the descent stage to recharge its batteries until 18 ing site, at 25.85° N, 30.45° E (Figure 327A).
    [Show full text]