Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned Tnn AMERrcex M TNERALocIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol 25 JULY, 1940 No. 7 CRYSTAL CHEMISTRY OF THE PHOSPHATES,ARSE- NATES AND VANADATES OF THE TYPE A.zXO+(Z) War,r,acBE. RrcHuoNr HaraardUniversity TeelB on CoNrBNrs Page L lntroduction M2 1. Statement of problem M2 2. Criteria for mineralogical classification M2 A. Chemical criteria 442 B. Crystallographic criteria 4M II. Data for the type AzXO{Z) 445 1. Chemistry 445 A. Phosphates, arsenates,vanadates 445 B. Sulphates M5 Lanarkite 445 Dolerophanite M5 C. Silicates .M6 Andalusite 446 Sillimanite. M6 Cyanite. 446 Sphene M8 Datolite. 448 2. Crystallography. .49 A Orthorhombic Section 449 a. Libethenite group 452 Libethenite and adamite 452 Olivenite .. 453 b. Adelite group Adelite 455 Higginsite Austinite. 457 Duftite 458 Descloizite. 459 Descloizite series 459 Pyrobelonite. 460 c. Effectoftheionsin the AA and AB positions 461 B. Monoclinic Section . 462 a. Tilasite group. 464 Tilasite 464 Durangite 465 442 II/ALLACE E. RICHMOND Page b. Sarkinitegroup 466 Sarkinite. +ot Triplite. 468 Triploidite 469 Wagnerite(Cryphiolite) . 470 Cryphiolite. 47r Herderite A'N C. Triclinic Section Amblygonite . 473 Amblygonite series 475 Tarbuttite 475 III Minerals previously classified with members of this type . 476 Cornetite 477 Araeoxen 477 Brackebuschite... .. 477 Spodiosite 477 Calciovolborthite (Tangeite) 477 Pseudotriplite +77 Allauaudite 477 Sarcopside +77 Xan t hoarsenite Melanchlor 478 Morinite and soumansite .. 478 IV. Acknowledgments 478 V. References 478 I. INTRODUCTION 1. SrarnnnNT oF PRoBLEM This investigation was undertaken to determine the extent to which minerals of a single chemical type are related, and whether their chem- ical and physical properties permit their arrangement in a simple classi- fication. The chemicaltype chosenfor this researchis expressedby the general formula A2XO4(Z), which assumed no prior knowledge of the atomic structure. Another formula (AZ)(AXO4), in usein current litera- ture, presupposesa clear perceptionof the structure, which, the writer believes,has not been adequately demonstrated. 2. CnrrBnrn loR MTNERALocTcALCressrlrcerroN A. ChemicalCriter'io. The newapproach to the crystallochemical classi- fication betweenspecies has been hereattempted (Berman, 1937).When minerals are assumedto belong to a chemical type, it implies that their crystal structures may be related through similarities in the relative numbersand sizesof the atoms, the type of bonding betweenthem, and their polarization properties (Stillwell, 1938). In simple chemical com- pounds,these properties are well known, sincemany structural analyses CRYSTALCHEMISTRY OF THE TYPE A,XOA(Z) M3 have been made (Stillwell, 1938).However, in the type AzXO4(Z),Uttle is known concerningtheir structure becauseof their complexity. Never- theless,it is possible to recognizecertain fundamental structural proper- ties which must belong to all minerals of this type. The minerals of the type ArXOa(Z) rrlay be divided into two families, one with a general formula AAXOa(Z), the other ABXO+(Z). This im- plies, in the first formula, that the two ,4 positions are equivalent and must, therefore,be occupiedeither by identical atoms or by unlike atoms whoseionic radii are similar in size and may therefore substitute for each other. When these positions are occupied by identical atoms, simpler compoundsare formed, e.g. libethenite CugPO+(OH)which is typical of a simple salt of this type. If the positions are occupied by different atoms similar in size,a seriesusually results in which the ratio between the two atoms is variable, e.g. triplite (Fe,Mn)2PO*(OH). In this paper, those minerals forming mixed crystals are said to be isomorphous,using the term in its restrictedand classicalsense (in Ber- man, 1937).Further examplesof this relationshipwill be seenunder the discussionof the sarkinite group. The positionsAA, assumedto be equivalentin the family AAXOa(Z)' becomenon-equivalent in the family ABXO+(Z). The AB positions are occupied by unlike atoms whose ionic radii are different, and therefore form double salts in which the ratio between these atoms closely ap- proaches1:1, e.g.adelite CaMgAsOr(OH). Thesecation positionsAA or AB are not necessarilyoccupied by atoms of equal valence,but the sum of such valencesequals four in the phos- phates,arsenates, vanadates and sulphatesand six in the silicates.This is shown in adelite Ca++Mg++Aso+(oH), durangite Na+Al+++Ason(oH) and andalusiteA1+++Al+++SiOr(O). The major division within a chemical type is the family, which is again basedon chemistry. The individual speciescomprising the families do not necessarilyform isomorphousseries with eachother, but they are united by ties of similar cell size, cell edge lengths, axial ratios, optical, chemical and physical properties. The minerals whose properties show this similarity may be said to be homologoas.This term, in mineralogical classifications,should be restricted to the general relationships between families or groups, not to the more intimate relationships between species or series. The family itself may be further divided into groups and specieson the basis of crystallography and other physical properties. In the classification which is given below, each family AAXO+(Z) and ABXO4(Z) containsthree crystallographicsections, orthorhombic, mon- oclinic and triclinic. For purposes of clarity and to avoid repetition, the WALLACE E RICHMOND discussionof the groups and specieswill be given under their appropriate crystallographic sections. This arrangement of the discussion will also bring out certain relationships between the orthorhombic specieswhich would otherwise be lost. B. Crystallographic Criteri.a. The general crystallographic constants from the morphology and r-ray study must be in simple relation. fn many casesthe morphological constants do not coincide with the r-ray constants. This disagreement may lie in the adopted morphological orientation, in the choice of the unit form or both. When such discrep- ancies occur, the morphology is changed in this paper to conform to the T,q.nr,n 1. Cl,lssrFlcnrroN or rrre Pnospn.Lrns, Ansnx,lrns aNo V.q.nlomus ol rnr Cnurrclr- Typn ArXOr(Z) Family AAXOa(Z) Orthorhombic Section Libethenite group Libethenite Cur POr (OH) Olivenite Cu: AsOq (OH) Adamite Znz AsOr (OH) Monoclinic Section Sarkinite group Sarkinite Mnz Asor (OH) Triplite (Mn, Fe), POa (F) Sarcopside (Fe, Mn, Ca)2 POr (F) Pseudotriplite (Fe, Mn)z POr (F) Triploidite (Mn, Fe)g POa (OH) Wagnerite Ms, (Ca,P)Or (F) Triclinic Section Tarbuttite Zn, POr (OH) Family ABXOa(Z) Orthorhombic Section Adelite group Adelite MgCa AsOr (OH, F) Higginsite CuCa AsOr (oH) Calciovolborthite CuCa vor (oH) Austinite ZnCa AsOr (oH) Duftite CuPb AsOr (OH) Descloizite (Cu, Zn)Pb vor (oH) Araeoxen ZnPb (V, As)Or(OH) Pyrobelonite MnPb vor (oH) Brackebuschite PbMn vor (oH) Monoclinic Section Tilasite MgCa AsOr (F, OH) Durangite NaAl AsOa (F) Herderite CaBe PO+ (OH, F) Triclinic Section Amblygonite (Li, Na)Al POr (F, OH) CRYSTAL CHEMISTRY oF THE TYPE AzXoI(Z) structural crystallography. This change is commonly advantageous since the new morphology usually gives simpler indices. A full discussion of the orientation adopted here will be given later' These crystallographic constants, when properly adjusted, may then be used as a basis for arranging the speciesin an orderly manner within their crystallographic sections. The major criteria for a mineralogical classification have now been given. It is, therefore, advisable at this point, before discussingthe de- tails of the data, to present the suggestedclassification. This is given in Table 1. This classification may be compared with that of Dana (1892). The major outline of both classificationsis essentially the same, since both are based on the same principles. Because Dana did not recognize the family, as used here, his arrangement is somewhat difierent. This is due in large part to the fact that the new r-ray technique was not available to him. The classificationsgiven by H:intze and by Doelter are essentially the sameas Dana's with more emphasisplaced on chemistry, which accounts for the somewhat different arrangement. II. DATA FOR THE TYPE ArXO4(Z) 1. CnpnnsrnY A. Phosphates,arsenates, vanailates. No new chemical analyses have been made for this study with the exception of wagnerite, which will be discussedin its proper place. The chemical composition of the members of the type is well known and generally accepted so that a detailed de- scription of each speciesfrom this point of view is unnecessary. B. Sulphotes. Two sulphates, lanarkite, PbzSOr, and dolerophanite, Cu2SOb,may be considered as possible members of the chemical type, since their formulae may equally well be written PbrSOa(O)and CuzSOa- (O), respectively. The r-ray examination of these two minerals in con- junction with their chemical and physical properties shows no relation- ship with the correspondingpropeities of any members of the type. The- study of these minerals has already been published by Richmond and Wolfe (1938,1939). The following table summarizesthese results. Lanarkite DoleroPhonite Comp. PbzSOs CugSOs Ao 13.73 9.39 bo ).06 6.30 Co 7.07 7.62 r asibnics 2.417: | :| 245;A : 116013' 1.490:1: 1 .209; B : l)2o41t Vo 494 380 446 WALLACE E. RICHMOND Lonarhi.te Dolerophanite SpaceGroup Cza3-C2/m' Czn3-C2fm H 2-2.5 3 D 6.92 +. rt Optics X 1.928 1.715 Y 2.007;Y:b 1.820;Y:b Z 2 O36;Z\c:30" 1 .880; 27\ :6 - 19' A comparisonof theseproperties with those shown in Table 4 under the tilasite group indicatesthat
Recommended publications
  • The Krásno Sn-W Ore District Near Horní Slavkov: Mining History, Geological and Mineralogical Characteristics
    Journal of the Czech Geological Society 51/12(2006) 3 The Krásno Sn-W ore district near Horní Slavkov: mining history, geological and mineralogical characteristics Sn-W rudní revír Krásno u Horního Slavkova historie tìby, geologická a mineralogická charakteristika (47 figs, 1 tab) PAVEL BERAN1 JIØÍ SEJKORA2 1 Regional Museum Sokolov, Zámecká 1, Sokolov, CZ-356 00, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, CZ-115 79, Czech Republic The tin-tungsten Krásno ore district near Horní Slavkov (Slavkovský les area, western Bohemia) belongs to the most important areas of ancient mining in the Czech Republic. The exceptionally rich and variable mineral associations, and the high number of mineral species, make this area one of the most remarkable mineralogical localities on a worldwide scale. The present paper reviews the data on geological setting of the ore district, individual ore deposits and mining history. Horní Slavkov and Krásno were known as a rich source of exquisite quality mineral specimens stored in numerous museum collections throughout Europe. The old museum specimens are often known under the German locality names of Schlaggenwald (= Horní Slavkov) and Schönfeld (=Krásno). The megascopic properties and paragenetic position of selected mineral classics are reviewed which include arsenopyrite, fluorapatite, fluorite, hübnerite, chalcopyrite, carpholite, cassiterite, quartz, molybdenite, rhodochrosite, sphalerite, topaz and scheelite. Key words: Sn-W ores; tin-tungsten mineralization; mining history; ore geology; mineralogy; Slavkovský les; Krásno, Horní Slavkov ore district; Czech Republic. Introduction valleys dissected parts of the area. In the ore district area, the detailed surface morphology is modified by large de- In the mining history of Central Europe, Bohemia and pressions caused by the collapse of old underground Moravia are known as important source of gold, silver, workings and by extensive dumps.
    [Show full text]
  • Sarkinite Mn (Aso4)(OH)
    2+ Sarkinite Mn2 (AsO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals typically thick tabular {100}, elongated, to 4 mm, short prismatic, or tabular along [010]. May be crudely spherical, granular massive. Physical Properties: Cleavage: On {100}, distinct. Fracture: Subconchoidal to uneven. Hardness = 4–5 D(meas.) = 4.08–4.18 D(calc.) = 4.20 Optical Properties: Semitransparent. Color: Flesh-red to dark blood-red, rose-red, orange, orange-brown, brown, reddish yellow to yellow; pale rose to yellow in transmitted light. Streak: Rose-red to yellow. Luster: Greasy. Optical Class: Biaxial (–). Pleochroism: Weak. Orientation: Y = b; X ∧ c = –54◦. Dispersion: r< v. Absorption: X > Z > Y. α = 1.790–1.793 β = 1.794–1.807 γ = 1.798–1.809 2V(meas.) = 83◦ Cell Data: Space Group: P 21/a. a = 12.779(2) b = 13.596(2) c = 10.208(2) β = 108◦530 Z=16 X-ray Powder Pattern: Pajsberg [Harstigen mine, near Persberg], Sweden. 3.18 (10), 3.04 (10), 3.29 (9), 3.48 (8), 2.90 (7), 2.65 (6), 6.0 (3) Chemistry: (1) (2) (3) (1) (2) (3) P2O5 0.21 ZnO 0.15 As2O5 41.60 44.09 43.23 PbO 0.25 CO2 0.76 MgO 0.98 0.19 FeO 0.13 0.02 CaO 1.40 0.29 MnO 51.60 51.77 53.38 H2O 3.06 [3.40] 3.39 CuO 0.01 insol. 0.38 Total 100.37 [99.92] 100.00 (1) Pajsberg [Harstigen mine, near Persberg], Sweden.
    [Show full text]
  • 1 CRYSTAL CHEMISTRY of SELECTED Sb, As and P MINERALS
    Crystal Chemistry of Selected Sb, As, and P Minerals Item Type text; Electronic Dissertation Authors Origlieri, Marcus Jason Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 10:49:41 Link to Item http://hdl.handle.net/10150/194240 1 CRYSTAL CHEMISTRY OF SELECTED Sb, As AND P MINERALS by Marcus Jason Origlieri ___________________________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2005 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Marcus Jason Origlieri entitled Crystal Chemistry of Selected Sb, As, and P Minerals and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: November 15, 2005 Robert T. Downs _______________________________________________________________________ Date: November 15, 2005 M. Bonner Denton _______________________________________________________________________ Date: November 15, 2005 Mihai N. Ducea _______________________________________________________________________ Date: November 15, 2005 Charles T. Prewitt Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Plumbogummite Pbal3(PO4)2(OH)5 • H2O C 2001-2005 Mineral Data Publishing, Version 1
    Plumbogummite PbAl3(PO4)2(OH)5 • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32/m. Crystals hexagonal or bladed, prismatic, to 5 mm, in parallel to subparallel aggregates; microscopically radially fibrous or spherulitic; usually as crusts, botryoidal, reniform, stalactitic, globular, compact massive. Physical Properties: Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 4.5–5 D(meas.) = 4.01 D(calc.) = [4.08] Optical Properties: Transparent to translucent. Color: Grayish white, grayish blue, yellowish gray, yellowish brown, green, pale blue. Streak: White. Luster: Vitreous, resinous to dull. Optical Class: Uniaxial (+); segments of crystals may be biaxial. ω = 1.653–1.688 = 1.675–1.704 Cell Data: Space Group: R3m. a = 7.017(1) c = 16.75(1) Z = 3 X-ray Powder Pattern: Ivanhoe mine, Australia. 2.969 (10), 5.71 (9), 2.220 (8), 3.51 (7), 1.905 (6), 3.44 (5), 4.93 (4) Chemistry: (1) (2) SO3 0.67 P2O5 22.47 24.42 As2O5 0.04 Al2O3 25.45 26.32 Fe2O3 0.01 CuO 0.92 PbO 38.90 38.41 H2O [11.54] 10.85 Total [100.00] 100.00 1− (1) Ivanhoe mine, Australia; by electron microprobe, H2O by difference, (OH) • confirmed by IR; leading to Pb1.02Cu0.07Al2.92[(PO4)1.85(SO4)0.05]Σ=1.90(OH)5.29 0.73H2O. • (2) PbAl3(PO4)2(OH)5 H2O. Mineral Group: Crandallite group. Occurrence: An uncommon secondary mineral in the oxidized zone of lead deposits. Association: Pyromorphite, mimetite, duftite, cerussite, anglesite, wulfenite. Distribution: In France, from Huelgoat, Finist`ere.In England, from Roughton Gill, Red Gill, Dry Gill, and other mines, Caldbeck Fells, Cumbria; in Cornwall, from Wheal Gorland, Gwennap; at the Penberthy Croft mine, St.
    [Show full text]
  • Wickenburgite Pb3caal2si10o27² 3H2O
    Wickenburgite Pb3CaAl2Si10O27 ² 3H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Hexagonal. Point Group: 6=m 2=m 2=m: Tabular holohedral crystals, dominated by 0001 and 1011 , to 1.5 mm. As spongy aggregates of small, highly perfect f g f g individuals; as subparallel aggregates or rosettes; granular. Physical Properties: Cleavage: 0001 , indistinct. Tenacity: Brittle but tough. Hardness = 5 D(meas.) = 3.85 D(cfalc.) g= 3.88 Fluoresces dull orange under SW UV. Optical Properties: Transparent to translucent. Color: Colorless to white; rarely salmon-pink. Luster: Vitreous. Optical Class: Uniaxial ({). Dispersion: r < v; moderate. ! = 1.692 ² = 1.648 Cell Data: Space Group: P 63=mmc: a = 8.53 c = 20.16 Z = 2 X-ray Powder Pattern: Near Wickenburg, Arizona, USA. 10.1 (100), 3.26 (80), 3.93 (60), 3.36 (40), 2.639 (40), 5.96 (30), 5.04 (30) Chemistry: (1) (2) SiO2 42.1 40.53 Al2O3 7.6 6.88 PbO 44.0 45.17 CaO 3.80 3.78 H2O 3.77 3.64 Total 101.27 100.00 (1) Near Wickenburg, Arizona, USA. (2) Pb3CaAl2Si10O24(OH)6: [needsnew??formula] Occurrence: In oxidized hydrothermal veins, carrying galena and sphalerite, in quartz and °uorite gangue (near Wickenburg, Arizona, USA). Association: Phoenicochroite, mimetite, cerussite, willemite, crocoite, duftite, hemihedrite, alamosite, melanotekite, luddenite, ajoite, shattuckite, vauquelinite, descloizite, laumontite. Distribution: In the USA, in Arizona, at several localities south of Wickenburg, Maricopa Co., including the Potter-Cramer property, Belmont Mountains, and the Moon Anchor mine; on dumps at a Pb-Ag-Cu prospect in the Artillery Peaks area, Mohave Co.; and in the Dives (Padre Kino) mine, Silver district, La Paz Co.
    [Show full text]
  • Liroconite Cu2al(Aso4)(OH)4 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
    Liroconite Cu2Al(AsO4)(OH)4 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals with a flattened octahedral or lenticular aspect, dominated by {110} and {011} and striated parallel to their intersections, also {001}, {010}, {100}, to 3.6 cm, alone and in sub-parallel groups. May be granular, massive. Physical Properties: Cleavage: On {110}, {011}, indistinct. Fracture: Uneven to conchoidal. Hardness = 2–2.5 D(meas.) = 2.94–3.01 D(calc.) = [3.03] Optical Properties: Transparent to translucent. Color: Sky-blue, bluish green, verdigris-green, emerald-green; pale blue to pale bluish green in transmitted light. Streak: Pale blue to pale green. Luster: Vitreous to resinous. Optical Class: Biaxial (–). Orientation: Y = b; Z ∧ a =25◦. Dispersion: r< v,moderate. α = 1.612(3) β = 1.652(3) γ = 1.675(3) 2V(meas.) = n.d. 2V(calc.) = 72(5)◦ Cell Data: Space Group: I2/a. a = 12.664(2) b = 7.563(2) c = 9.914(3) β =91.32(2)◦ Z=4 X-ray Powder Pattern: Cornwall, England. 6.46 (10), 3.01 (10), 5.95 (9), 2.69 (6), 3.92 (5), 2.79 (5), 2.21 (5) Chemistry: (1) (2) P2O5 3.73 As2O5 23.05 26.54 Al2O3 10.85 11.77 Fe2O3 0.98 CuO 36.38 36.73 H2O 25.01 24.96 Total 100.00 100.00 • (1) Cornwall, England. (2) Cu2Al(AsO4)(OH)4 4H2O. Occurrence: A rare secondary mineral in the oxidized zone of some copper deposits. Association: Olivenite, chalcophyllite, clinoclase, cornwallite, strashimirite, malachite, cuprite, “limonite”.
    [Show full text]
  • Koritnigite Zn(Aso3oh)•
    Koritnigite Zn(AsO3OH) • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic, pseudomonoclinic. Point Group: 1. As imperfect platy crystals, to 5 mm, in aggregates. Physical Properties: Cleavage: {010}, perfect; cleavage traces k [001] and k [100], visible on {010}. Tenacity: Flexible. Hardness = 2 D(meas.) = 3.54 D(calc.) = 3.56 Optical Properties: Transparent. Color: Colorless, white, rose. Luster: Pearly on {010}. Optical Class: Biaxial (+). Orientation: X = b; Y ∧ a ' 28◦; Z ∧ c ' 22◦. α = 1.632(5) β = 1.652(3) γ = 1.693(3) 2V(meas.) = 70(5)◦ Cell Data: Space Group: P 1. a = 7.948(2) b = 15.829(5) c = 6.668(2) α =90.86(2)◦ β =96.56(2)◦ γ =90.05(2)◦ Z=8 X-ray Powder Pattern: Tsumeb, Namibia; very close to cobaltkoritnigite. 7.90 (10), 3.16 (9), 3.83 (7), 2.461 (6), 2.186 (5), 3.95 (4), 2.926 (4) Chemistry: (1) (2) (3) As2O5 51.75 54.67 51.46 FeO + Fe2O3 trace 0.05 CoO 4.54 NiO 2.44 ZnO 35.97 25.83 36.44 MgO trace H2O [12.3] [12.47] 12.10 Total [100.0] [100.00] 100.00 2− (1) Tsumeb, Namibia; by electron microprobe, (AsO3OH) confirmed by IR, H2O by difference. • (2) J´achymov, Czech Republic; H2O by difference. (3) Zn(AsO3OH) H2O. Occurrence: A secondary mineral of the lower oxidation zone in a dolostone-hosted polymetallic hydrothermal ore deposit (Tsumeb, Namibia). Association: Tennantite, cuprian adamite, stranskiite, lavendulan, k¨ottigite,tsumcorite, prosperite, o’danielite (Tsumeb, Namibia); erythrite, arsenolite, sphalerite (J´achymov, Czech Republic).
    [Show full text]
  • Mottramite Pbcu(VO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Mottramite PbCu(VO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, equant or dipyramidal {111}, prismatic [001] or [100], with {101}, {201}, many others, to 3 mm, in drusy crusts, botryoidal, usually granular to compact, massive. Physical Properties: Fracture: Small conchoidal to uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = ∼5.9 D(calc.) = 6.187 Optical Properties: Transparent to nearly opaque. Color: Grass-green, olive-green, yellow- green, siskin-green, blackish brown, nearly black. Streak: Yellowish green. Luster: Greasy. Optical Class: Biaxial (–), rarely biaxial (+). Pleochroism: Weak to strong; X = Y = canary-yellow to greenish yellow; Z = brownish yellow. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,strong; rarely r< v.α= 2.17(2) β = 2.26(2) γ = 2.32(2) 2V(meas.) = ∼73◦ Cell Data: Space Group: P nma. a = 7.667–7.730 b = 6.034–6.067 c = 9.278–9.332 Z=4 X-ray Powder Pattern: Mottram St. Andrew, England; close to descloizite. 3.24 (vvs), 5.07 (vs), 2.87 (vs), 2.68 (vs), 2.66 (vs), 2.59 (vs), 1.648 (vs) Chemistry: (1) (2) (1) (2) CrO3 0.50 ZnO 0.31 10.08 P2O5 0.24 PbO 55.64 55.30 As2O5 1.33 H2O 3.57 2.23 V2O5 21.21 22.53 insol. 0.17 CuO 17.05 9.86 Total 100.02 100.00 (1) Bisbee, Arizona, USA; average of three analyses. (2) Pb(Cu, Zn)(VO4)(OH) with Zn:Cu = 1:1.
    [Show full text]
  • Adamite Series, and of Phosphate Substitution in Olivenite
    MINERALOGICAL MAGAZINE, MARCH 1983, VOL. 47, PP. 51 7 Infrared spectroscopic analysis of the olivenite- adamite series, and of phosphate substitution in olivenite R. S. W. BRAITHWAITE Chemistry Department, University of Manchester Institute of Science and Technology, Manchester, M60 1QD ABSTRACT. Infrared spectroscopy affords a rapid and Inspection of the infrared spectra of a number of easy method of estimating the position of a mineral in the natural samples suggested that infrared spectro- olivenite-adamite solid solution series, and of estimating scopy might afford a rapid and easy method for the amount of phosphate substitution in olivenites. placing the approximate position of a small sample Toman's discovery of the monoclinic symmetry of olivenites with up to approximately 20 atom ~ Zn/(Cu + in the olivenite-adamite series and for estimating Zn) has raised a problem in nomenclature. It is suggested the amount of anion substitution by phosphate. that the definition of'cuproadamite' be extended to cover Accordingly, numerous members of the olivenite- all orthorhombic members of the series containing adamite series were synthesized by the method used appreciable Cu. Studies of deuterated materials have by Guillemin (t956), Minceva-Stefanova et al. helped to solve some of the absorption band assignments (1965), and Toman (1978). In addition, the method for olivenite adamite, libethenite and related minerals. was extended to the preparation of phosphatian olivenites, libethenite, and some deuterated MEMBERS of the olivenite Cu2AsO4OH to adam- materials, required in order to distinguish vibra- ite Zn2AsO4OH solid solution series are well- tions involving O H from other vibrations (see known minerals from the oxidation zone of Cu- Experimental section).
    [Show full text]
  • Descloizite Pbzn(VO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1
    Descloizite PbZn(VO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, equant or pyramidal {111}, prismatic [001] or [100], or tabular {100}, with {101}, {201}, many others, rarely skeletal, to 5 cm, commonly in drusy crusts, stalactitic or botryoidal, coarsely fibrous, granular to compact, massive. Physical Properties: Fracture: Small conchoidal to uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = ∼6.2 D(calc.) = 6.202 Optical Properties: Transparent to nearly opaque. Color: Brownish red, red-orange, reddish brown to blackish brown, nearly black. Streak: Orange to brownish red. Luster: Greasy. Optical Class: Biaxial (–), rarely biaxial (+). Pleochroism: Weak to strong; X = Y = canary-yellow to greenish yellow; Z = brownish yellow. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,strong; rarely r< v.α= 2.185(10) β = 2.265(10) γ = 2.35(10) 2V(meas.) = ∼90◦ Cell Data: Space Group: P nma. a = 7.593 b = 6.057 c = 9.416 Z = 4 X-ray Powder Pattern: Venus mine, [El Guaico district, C´ordobaProvince,] Argentina; close to mottramite. 3.23 (vvs), 5.12 (vs), 2.90 (vs), 2.69 (vsb), 2.62 (vsb), 1.652 (vs), 4.25 (s) Chemistry: (1) (2) (1) (2) SiO2 0.02 ZnO 19.21 10.08 As2O5 0.00 PbO 55.47 55.30 +350◦ V2O5 22.76 22.53 H2O 2.17 −350◦ FeO trace H2O 0.02 MnO trace H2O 2.23 CuO 0.56 9.86 Total 100.21 100.00 (1) Abenab, Namibia.
    [Show full text]