Sample Chapter

Total Page:16

File Type:pdf, Size:1020Kb

Sample Chapter PROOF Contents List of Figures viii List of Table x List of Colour Plates xi Preface xii Acknowledgements xiv 1 PERCEPTION AS GATEWAY TO THE WORLD 1 2 THE MACHINERY: UNDERSTANDING THE NEURAL CODE 14 3 VISION 1: BRIGHTNESS 30 4 VISION 2: COLOUR 44 5 VISION 3: FROM IMAGES TO SPACE 54 6 VISION 4: TIME AND MOTION 71 7 HEARING 1: SOUND AND NOISE 85 8 HEARING 2: COMPLEX AUDITORY INFORMATION 99 9 CHEMICAL SENSES: SMELL AND TASTE 112 10 BODY SENSES: FROM THE CONTROL OF POSTURE TO TOUCH 124 11 FOCUS OF INTEREST: ATTENTIONAL MODULATION OF PERCEPTION 137 12 MANAGING INFORMATION FLOW THROUGH INTEGRATION OF SENSORY AND MOTOR SYSTEMS 148 13 MAKING SENSE: THEORETICAL APPROACHES TO PERCEPTION 161 References 171 Index 190 vii 99780230_552661_01_prexiv.indd780230_552661_01_prexiv.indd vviiii 112/18/20092/18/2009 66:31:37:31:37 PPMM PROOF PERCEPTION AS GATEWAY 121 TO THE WORLD OVERVIEW Why is perception such an important topic of study for psychologists? Throughout every single day of our life we incessantly and effortlessly solve complex tasks related to the collec- tion and interpretation of sensory input, and the planning and execution of action based on what is perceived. We (usually) experience little diffi culty in preparing a sandwich, catching a ball, riding a bicycle, or crossing a busy road – but each of these seemingly simple tasks requires a huge amount of sensory information processing! Only when we observe the hope- less efforts of robots facing much, much simpler challenges (like walking up a step), do we start to appreciate how diffi cult it is to navigate and coordinate movements in a group of independently moving individuals, for instance, on a crowded dance fl oor. To address these questions, and to understand more generally how a person collects knowledge about the world and acts in the world, the information processing paradigm is introduced, together with the computer metaphor for the brain. This approach is closely linked, through the specifi c relationship between brain and perception, and more generally the relationship between brain and mind, to the study of brain function, which embeds perception in a vari- ety of scientifi c disciplines that help us to analyse and conceptualise human behaviour. The attempt to localise mental functions in the brain is an illustration of how the information processing approach, and neuroscience, are highly relevant to gain some deep understanding of psychological phenomena. Sensory systems usually are treated as information processing channels that are tuned to particular signals (such as sounds, or odours) and used to solve particular tasks (such as communication). Studying such mechanisms from a scientifi c and/ or engineering perspective allows us to tackle questions of how their designs are optimised in the context of evolutionary adaptation and ecological constraints. In this framework, percep- tion can be described as the window between the physical world and mental states. WHAT IS THE PURPOSE OF THIS BOOK? In a time of rapidly growing competition for resources, be it the time invested by a student in reading a book (as well as the time spent by the author writing it), or the timber harvested from shrinking forests and processed into printing paper at high costs in terms of energy and water pollution, the fi rst question when picking up a book and beginning to turn the pages is ‘why should I read this book?’ The most simplistic answer for the Psychology student, ‘because it will help me to get my degree’, is certainly insuffi cient, and not a good reason to dig into hundreds of pages about phenomena and contexts that sometimes even present some challenge to understand. The reason for writing and reading this book, and for seri- ously engaging with its topic, is the fact that sensation, perception and action have a fun- damental relevance for all aspects of human behaviour and thinking. How can you prepare 1 99780230_552661_02_cha01.indd780230_552661_02_cha01.indd 1 112/18/20092/18/2009 77:06:59:06:59 PPMM PROOF 2 Sensation, Perception and Action your tea and sandwich in the morning? How do you coordinate getting dressed, picking up – and keeping hold of – your bag? How do you cross the road without getting run over, ride your bike without falling over, or steer your car through dense traffi c without getting involved in an accident? How do you fi nd your favourite cereal in the supermarket and pick it off the shelf? How do you follow, throw or catch a ball? How do you communicate with the people around you? And how do you actually read a book? In all our daily activities we need to interact with the world surrounding us, and for any interaction we need to use our senses to collect information and control our actions. And yet all of these processing steps are happening completely unaware and effortless! Without being equipped with a sensory system and perception, however, no autonomous agent would be able to act, nor survive, in its given environment. The little sketch in Figure 1.1 illustrates this crucial role of sensation and perception: the presence of an apple in the environment is picked up by the sensory system (through the eyes, or possibly by smell) and recognised as a real instance of the concept ‘apple’, which can trigger the behavioural response of grasping and eating (or avoidance, if the apple turns out to be rotten). The purpose of this book, therefore, is to provide a basic introduction to the function of sensory information processing in the context of action control and of a particular lifestyle and environment, and to give some clues about how evolution shaped these systems to make them effi cient and reliable, so that an agent (such as a person) can safely navigate in a com- plex environment and survive. It is important to note that the phrase ‘function’ has a dual meaning. On one hand this word relates to a specifi c mechanism, i.e. to the question ‘how does it work?’, which will be touched mainly in an abstract way in this book, because the actual workings of the neural machinery is the topic of more specialised neuroscience text- books. On the other hand the word ‘function’ relates to a purpose, i.e. to the question ‘how is it useful, what is it made for?’, which relates much more closely to the behavioural and ecological context. In this distinction, however, one should not forget that through evolu- tionary mechanisms the actual design of mechanisms is closely linked to its role in behaviour and environment, similar to the slogan of the Bauhaus arts and design school ‘form follows Figure 1.1 Grasp, eat ... Sensation and perception allows a person to detect real objects in the outside world and to control the appropriate action in response to objects and events. In this example an apple is picked up by the visual system of our little egghead, recognised as an instantiation of a highly relevant class of objects (the thought ‘this is an apple’), and the appropriate response will be triggered and again guided by sensory information (grasp, eat …). 99780230_552661_02_cha01.indd780230_552661_02_cha01.indd 2 112/18/20092/18/2009 77:06:59:06:59 PPMM PROOF Perception as Gateway to the World 3 function’. As a result of this conceptual framework, the current text differs from many other textbooks on the topic of sensation and perception by going beyond the mere description of perceptual phenomena, and focussing on the adaptation of particular perceptual mecha- nisms in the context of their use to solve tasks that we are facing in our everyday ‘struggle for survival’. As such this textbook, whereas mainly directed at students of Psychology and in its level of detail written for psychologists with limited previous exposure to an engineer- ing perspective, can also serve as introduction to the topic for computer scientists, engineers and biologists. REPRESENTING THE OUTSIDE WORLD So how do we perceive the outside world? What initially seems to be a straightforward question turns out to be a rather tricky philosophical problem. How do we know where we are, what is in the space surrounding us, what the effects of our actions are, how do we communicate with others and understand messages in a complex society? The answer seems to be very simple: we use our senses. We see the furniture, the walls, the trees in our environment, we hear birds, cars and airplanes, and what other people are saying to us, we smell burning toast, and sense the heat (and sometimes the pain) when trying to remove it from the toaster, we feel the knife in our hand and taste the melting butter and the fl avour of the jam. Very simple, and yet quite complicated when you think more thoroughly about it – there are myriad tricky questions lurking behind these everyday perceptions and actions, some of which will be answered in this book. How do we steer clear of furniture, know the distance away of walls and trees, how can we judge the speed of an approaching car? How do we recognise the voice of a friend, the face of our grandmother? What makes us smell the toast burning? When do we feel the heat and when does it turn into pain? How do we know how to grasp the knife at its handle and not at its blade? What makes us discriminate the taste of strawberry and raspberry jam? The com- mon theme behind these questions is the collection of information about the outside world, in order to know, to understand and to act. It could be argued that through our senses we are building a representation of the outside world in our mind.
Recommended publications
  • The Role of One-Shot Learning in #Thedress
    Journal of Vision (2017) 17(3):15, 1–7 1 The role of one-shot learning in #TheDress Laboratory of Psychophysics, Brain Mind Institute, Ecole´ Polytechnique Fed´ erale´ de Lausanne (EPFL), Leila Drissi Daoudi Lausanne, Switzerland $ Laboratory of Psychophysics, Brain Mind Institute, Ecole´ Polytechnique Fed´ erale´ de Lausanne (EPFL), Adrien Doerig Lausanne, Switzerland $ Institute of Cognitive Neurosciences, Khatuna Parkosadze Agricultural University of Georgia, Tbilisi, Georgia $ Institute of Cognitive Neurosciences, Marina Kunchulia Agricultural University of Georgia, Tbilisi, Georgia $ Laboratory of Psychophysics, Brain Mind Institute, Ecole´ Polytechnique Fed´ erale´ de Lausanne (EPFL), Michael H. Herzog Lausanne, Switzerland $ #TheDress is remarkable in two aspects. First, there is a dress are black and blue. Although the differences in bimodal split of the population in the perception of the the perceived and true colors are striking, apparent dress’s colors (white/gold vs. black/blue). Second, changes in color are common in many illusions, such as whereas interobserver variance is high, intra-observer the checker shadow illusion (Adelson, 1995). These variance is low, i.e., the percept rarely switches in a given illusions are usually explained in terms of color individual. There are two plausible routes of explanations: constancy, where the luminance of the context plays the either one-shot learning during the first presentation of the image splits observers into two different, stable crucial role. Also in #TheDress, color constancy plays populations, or the differences are caused by stable traits an important role (Brainard & Hurlbert, 2015; Ge- of observers, such as different visual systems. Here, we genfurtner, Bloj, & Toscani, 2015; Winkler, Spillmann, hid large parts of the image by white occluders.
    [Show full text]
  • Uncertainty and Decision-Making in the Human Brain
    UNCERTAINTY AND DECISION-MAKING IN THE HUMAN BRAIN Iris M. D. Vilares Dissertation presented to obtain the Ph.D degree in Biology | Neuroscience Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Research work coordinated by: Oeiras, December, 2013 ii To my family iii iv APOIO FINANCEIRO/FINANCIAL SUPPORT Apoio financeiro da FCT e do FSE no âmbito do Quadro Comunitário de Apoio, bolsa de doutoramento n° SFRH/BD/33272/2007. O ultimo ano foi financiado pelo National Institute of Health, bolsa n° 2P01NS044393. Financial support for this thesis was provided by FCT and FSE through the Quadro Comunitário de Apoio, doctoral fellowship n° SFRH/BD/33272/2007. The last year was provided by the National Institute of Health, grant n° 2P01NS044393. v vi ACKNOWLEDGEMENTS Many people have helped me through this path, and I am immensely grateful to all of them. I would like to thank: My supervisor, Dr. Konrad Kording. Thank you for being an amazing supervisor, for always being there to help me. You developed in me a love for science and always believed in my scientific skills, sometimes even more than myself. Thank you for your guidance and support at all times. For always feeling welcomed to go to you for any question, be it scientific or not. Thank you for an incredible mentorship. You are my scientific role model. My internal supervisor, Dr. Rui Costa. Thank you for your enthusiasm and support at all times. Thank you for all the help you gave me in taking care of bureaucracy, especially this past month, when almost every day I was sending you an email.
    [Show full text]
  • Teaching Visual Art with the Brain in Mind
    1 Teaching Visual Art with the Brain in Mind A thesis presented by Karen G. Pearson to the Graduate School of Education In partial fulfillment of the requirements for the degree of Doctor of Education In the field of Education College of Professional Studies Northeastern University Boston, Massachusetts August 20, 2019 2 ABSTRACT Critical periods of perceptual development occur during the elementary and middle school years. Vision plays a major role in this development. The use of child development knowledge of Bruner, Skinner, Piaget and Inhelder coupled with the artistic thinking theories of Goldschmidt, Marshall, and Williams through and the lens of James J. Gibson and his ex-wife Eleanor J. framed the study. Sixteen 8-10-year-olds over eight one-hour weekly meetings focused on how they see and learn how to draw. The study demonstrated that the perception of the participants followed the development of the visual pathway as described in empirical neural studies. Salient features presented themselves first and then, over time, details such as space, texture, and finally depth can be learned over many years of development. The eye muscles need to build stamina through guided lessons that provide practice as well as a finished product. It was more important to focus on the variety of qualities of line, shape, and space and strategy building through solution finding and goal setting. Perceptual development indicators of how 8-10-year-old elementary students see and understand images will be heard from their voices. The results indicated that practice exercises helped participants build stamina that directly related to their ability to persist in drawing.
    [Show full text]
  • Eye Fields in the Frontal Lobes of Primates
    Brain Research Reviews 32Ž. 2000 413±448 www.elsevier.comrlocaterbres Full-length review Eye fields in the frontal lobes of primates Edward J. Tehovnik ), Marc A. Sommer, I-Han Chou, Warren M. Slocum, Peter H. Schiller Department of Brain and CognitiÕe Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA Accepted 19 October 1999 Abstract Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortexŽ. DMFC ; the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye fieldŽ. FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only.
    [Show full text]
  • Improvement in Smooth Pursuit Eye Movements After Cigarette Smoking in Schizophrenic Patients Ann Olincy, M.D., M.P.H., Randal G
    ELSEVIER Improvement in Smooth Pursuit Eye Movements after Cigarette Smoking in Schizophrenic Patients Ann Olincy, M.D., M.P.H., Randal G. Ross, M.D., David A. Young, Ph.D., Margaret Roath, M.S. W., and Robert Freedman, M.D. -------·-------- ---------------·----- ____ .. __________________. ___ - This study examined whether schizophrenics' cigarette computerized pattern recognition software. After smoking, smoking normalized smooth pursuit eye movement smooth pursuit gain increased and the percentage of total abnormalities. Fifteen schizophrenic and 15 rwnschizophrenic eye movements due to leading saccades decreased subjects abstained from their usual cigarette smoking for an significantly in the schizophrenic patients. There were no average of 10 h. Their baseline performance during a changes in the gain or leading saccades of nonschizophrenic constant velocity smooth pursuit task was then assessed. subjects after smoking. Nicotinic receptor dysfunction may The subjects smoked as much as they desired in a 10-min be a candidate mechanism for smooth pursuit eye movement period and then were retested immediately rostsmoking, abnormalities in schizophrenia. and 10 and 20 min later. Smooth pursuit gain and the [Neuropsychopharmacology 18:175-185, 1998] percentage of total eye movement due to various saccadic © 1998 American College of Neuropsychopharmacology. subtypes were computed using infrared oculography and Published by Elsevier Science Inc. ----- - -- --------------------·------------···--- ----- -------- KEY WORDS: Cigarette smoking; Nicotine; Smooth pursuit creased frequency in relatives of schizophrenic probands eye movements; Schizophrenia; Saccades (Levy et al. 1983; Holzman et al. 1984; Clementz et al. 1992; Ross et al. 1996). Family studies have suggested Physiological deficits found in schizophrenic patients that a single autosomally transmitted gene may largely and their relatives have been proposed to elucidate ge­ account for SPEM deficits in schizophrenic patients and netic and pathophysiological mechanisms in schizo­ their relatives (Holzman et al.
    [Show full text]
  • The Effect of Eye Movements and Blinks on Afterimage Appearance and Duration
    Journal of Vision (2015) 15(3):20, 1–15 http://www.journalofvision.org/content/15/3/20 1 The effect of eye movements and blinks on afterimage appearance and duration School of Psychology, Cardiff University, # Georgina Powell Cardiff, Wales, UK $ School of Psychology, Cardiff University, # Petroc Sumner Cardiff, Wales, UK $ Lyon Neuroscience Research Center, # Aline Bompas Centre Hospitalier Vinatier, Bron, Cedex, France $ The question of whether eye movements influence argued that afterimage signals are inherently ambigu- afterimage perception has been asked since the 18th ous, and this could explain why their visibility is century, and yet there is surprisingly little consensus on influenced by cues, such as surrounding luminance how robust these effects are and why they occur. The edges, more than are real stimuli (Powell, Bompas, & number of historical theories aiming to explain the Sumner, 2012). Helmholtz (1962) identified another cue effects are more numerous than clear experimental that is important to take into account when conducting demonstrations of such effects. We provide a clearer afterimage experiments: characterization of when eye movements and blinks do or do not affect afterimages with the aim to distinguish For obtaining really beautiful positive after- between historical theories and integrate them with a images, the following additional rules should be modern understanding of perception. We found neither saccades nor pursuit reduced strong afterimage observed. Both before and after they are devel- duration, and blinks actually increased afterimage oped, any movement of the eye or any sudden duration when tested in the light. However, for weak movement of the body must be carefully avoided, afterimages, we found saccades reduced duration, and because under such circumstances they invariably blinks and pursuit eye movements did not.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Light, Nearwork, and Visual Environment Risk Factors in Myopia Permalink https://escholarship.org/uc/item/1bj5m20w Author Alvarez, Amanda Aleksandra Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Light, Nearwork, and Visual Environment Risk Factors in Myopia By Amanda Aleksandra Alvarez A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christine F. Wildsoet, Chair Professor Austin Roorda Professor Ruzena Bajcsy Fall 2012 Light, Nearwork, and Visual Environment Risk Factors in Myopia Copyright © 2012 by Amanda Aleksandra Alvarez Abstract Light, Nearwork, and Visual Environment Risk Factors in Myopia By Amanda Aleksandra Alvarez Doctor of Philosophy in Vision Science University of California, Berkeley Professor Christine F. Wildsoet, Chair Myopia, or nearsightedness, is a form of visual impairment in which distant objects appear blurry due to excessive axial eye growth that is mismatched to the eye’s refractive power. This condition, though treatable with spectacles, contact lenses, or refractive surgery, continues to increase in prevalence, particularly in some Asian countries, where up to 80-90% of young people and students are myopic. High myopia (< -6.00 D) is associated with greater risk of glaucoma, retinal detachment, and other blinding complications. Myopia is a complex disease with both genetic and environmental components. Rising myopia prevalence rates have mirrored lifestyle shifts that include reduced outdoor and light exposure. The directionality and impact of environmental risk factors, particularly light exposure, on myopia, continue to be poorly understood, partly due to the lack of in vivo and realtime instruments for measuring these effects.
    [Show full text]
  • Smooth Eye-Movement Control with Secondary Visual Feedback
    628 J. Opt. Soc. Am. A/Vol. 1, No. 6/June 1984 Y. Y. Zeevi and E. Peli Smooth eye-movement control with secondary visual feedback Yehoshua Y. Zeevi* Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 32000,Israel Eli Pelit Eye Research Institute of Retina Foundation, Boston, Massachusetts02114 Received October 25, 1982; accepted February 14, 1984 A signal derived from continuous measurement of eye position is displayed on a visual frame of reference, thereby closing a secondary visual feedback (2VFB) loop. The distance between a target and the displayed gaze point pro- vides the subject with an extra, artificial position error. Experiments show that subjects can use the 2VFB to gen- erate smooth eye movements, even in the absence of any smoothly moving independent targets. Under these con- ditions, both direction and velocity can be brought under voluntary control by the subjects. As a control signal for the smooth-eye-movement mode, the 2VFB is robust and easily manipulated and provides an attractive means for the investigation of the smooth-movement control system in a variety of tasks and under different conditions. INTRODUCTION designed an experiment to show that 2VFB can be combined with the internal model of target motion to maintain smooth studies",2 have demonstrated that smooth movement Various tracking of the disappearing target. can be elicited by visual means other than a real moving 3 In tracking a smoothly moving target, the eye velocity is, stimulus. For example, either the foveal afterimage or an 0 1 4 in most cases, somewhat lower than the target velocity.' ' ' optically stabilized foveal image can elicit smooth movement.
    [Show full text]
  • Margaret Dolinsky
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2014 FACING EXPERIENCE: A PAINTER'S CANVAS IN VIRTUAL REALITY Dolinsky, Margaret http://hdl.handle.net/10026.1/3204 Plymouth University All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior consent. FACING EXPERIENCE: A PAINTER’S CANVAS IN VIRTUAL REALITY by MARGARET DOLINSKY A thesis submitted to the University of Plymouth in partial fulfillment for the degree of DOCTOR OF PHILOSOPHY School of Art & Media Faculty of Arts In collaboration with Indiana University, Bloomington USA September 2014 Facing Experience: a painter's canvas in virtual reality Margaret Dolinsky Question: How can drawings and paintings created through a stream of consciousness methodology become a VR experience? Abstract This research investigate how shifts in perception might be brought about through the development of visual imagery created by the use of virtual environment technology. Through a discussion of historical uses of immersion in art, this thesis will explore how immersion functions and why immersion has been a goal for artists throughout history.
    [Show full text]
  • Optical Illusions and Effects on Clothing Design1
    International Journal of Science Culture and Sport (IntJSCS) June 2015 : 3(2) ISSN : 2148-1148 Doi : 10.14486/IJSCS272 Optical Illusions and Effects on Clothing Design1 Saliha AĞAÇ*, Menekşe SAKARYA** * Associate Prof., Gazi University, Ankara, TURKEY, Email: [email protected] ** Niğde University, Niğde, TURKEY, Email: [email protected] Abstract “Visual perception” is in the first ranking between the types of perception. Gestalt Theory of the major psychological theories are used in how visual perception realizes and making sense of what is effective in this process. In perception stage brain takes into account not only stimulus from eyes but also expectations arising from previous experience and interpreted the stimulus which are not exist in the real world as if they were there. Misperception interpretations that brain revealed are called as “Perception Illusion” or “Optical Illusion” in psychology. Optical illusion formats come into existence due to factors such as brightness, contrast, motion, geometry and perspective, interpretation of three-dimensional images, cognitive status and color. Optical illusions have impacts of different disciplines within the study area on people. Among the most important types of known optical illusion are Oppel-Kundt, Curvature-Hering, Helzholtz Sqaure, Hermann Grid, Muller-Lyler, Ebbinghaus and Ponzo illusion etc. In fact, all the optical illusions are known to be used in numerous area with various techniques and different product groups like architecture, fine arts, textiles and fashion design from of old. In recent years, optical illusion types are frequently used especially within the field of fashion design in the clothing model, in style, silhouette and fabrics. The aim of this study is to examine the clothing design applications where optical illusion is used and works done in this subject.
    [Show full text]
  • CS 543 / ECE 549 – Saurabh Gupta Spring 2021, UIUC
    Color CS 543 / ECE 549 – Saurabh Gupta Spring 2021, UIUC http://saurabhg.web.illinois.edu/teaching/ece549/sp2021/ Many slides adapted from S. Seitz, L. Lazebnik, J. Hayes, S. Palmer While we wait, what color is the dress? Today, • Light & Shading • Color • Dynamic Perspective • A. White and gold • B. Blue and Black • C. Other (use chat) https://www.wired.com/2015/02/science-one-agrees-color-dress/ Slide by L. Lazebnik What is color? • Color is the result of interaction between physical light in the environment and our visual system • Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights (S. Palmer, Vision Science: Photons to Phenomenology) Slide by L. Lazebnik Outline • Physical origin of color • Spectra of sources and surfaces • Physiology of color vision • Trichromatic color theory • Color spaces • Color constancy, white balance Electromagnetic spectrum Human Luminance Sensitivity Function Slide by L. Lazebnik The Physics of Light Any source of light can be completely described physically by its spectrum: the amount of energy emitted (per time unit) at each wavelength 400 - 700 nm. Relative # Photonsspectral (per powerms.) 400 500 600 700 Wavelength (nm.) © Stephen E. Palmer, 2002 Spectra of Light Sources Some examples of the spectra of light sources . A. Ruby Laser B. Gallium Phosphide Crystal # Photons # Photons Rel. power Rel. power 400 500 600 700 400 500 600 700 Wavelength (nm.) Wavelength (nm.) C. Tungsten Lightbulb D. Normal Daylight Rel. power # Photons # Photons Rel. power 400 500 600 700 400 500 600 700 © Stephen E.
    [Show full text]
  • Perceptual Decisions About Object Shape Bias Visuomotor Coordination During Rapid Interception Movements
    bioRxiv preprint doi: https://doi.org/10.1101/821074; this version posted February 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Perceptual decisions about object shape bias visuomotor coordination during 2 rapid interception movements 3 4 Deborah A. Barany, Ana Gómez-Granados, Margaret Schrayer, Sarah A. Cutts, Tarkeshwar 5 Singh 6 7 Department of Kinesiology 8 University of Georgia, Athens, GA 9 10 11 12 Corresponding author: 13 Tarkeshwar Singh 14 Department of Kinesiology 15 Behavioral and Cognitive Neuroscience Program 16 330 River Rd, 115H 17 Athens, GA-30605, USA 18 [email protected] 19 20 Figures: 5 21 Tables: 0 22 Total word count: 8055 23 24 Abbreviated title: Perceptual decisions during interception 25 26 Keywords: interception, dorsal-ventral interactions, smooth-pursuit, object recognition, 27 reaching. 28 29 Disclosures: The authors declare no conflict of interest, financial or otherwise. 30 31 Acknowledgements: We thank Negar Bassiri and Chris Mejias for assisting with data 32 collection. DAB received support from the American Heart Association (18POST34060183). A 33 portion of this research was supported by a grant from the University of Georgia Research 34 Foundation, Inc to TS. 35 1 bioRxiv preprint doi: https://doi.org/10.1101/821074; this version posted February 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 36 Abstract 37 Visual processing in parietal areas of the dorsal stream facilitates sensorimotor 38 transformations for rapid movement.
    [Show full text]