Kyle P. Obergfell

Total Page:16

File Type:pdf, Size:1020Kb

Kyle P. Obergfell NORTHWESTERN UNIVERSITY The Role of the Type IV Pilus Complex in DNA Transformation in Neisseria gonorrhoeae A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree DOCTOR OF PHILOSOPHY Field of Life Sciences By Kyle P. Obergfell EVANSTON, ILLINOIS September 2017 2 Abstract The Role of the Type IV Pilus Complex in DNA Transformation in Neisseria gonorrhoeae Kyle P. Obergfell Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea and is adapted to survive in humans, its only host. The N. gonorrhoeae cell wall is critical for maintaining envelope integrity, resisting immune cell killing, and production of cytotoxic peptidoglycan (PG) fragments. Deletion of the N. gonorrhoeae genes encoding two low-molecular-mass, penicillin-binding proteins (LMM PBPs), DacB and DacC, substantially altered the PG cross-linking. Loss of DacB peptidase resulted in global alterations to the PG composition, while loss of DacC affected a much narrower subset of PG peptide components. A double ΔdacB/ΔdacC mutant resembled the ΔdacB single mutant, but had an even greater level of cross-linked PG. While single ΔdacB or ΔdacC mutants did not show any major phenotypes, the ΔdacB/ΔdacC mutant displayed an altered cellular morphology, decreased resistance to antibiotics, and increased sensitivity to detergent mediated death. Loss of the two proteins drastically reduced the number of Type IV pili (Tfp), a critical virulence factor. The decreased piliation reduced transformation efficiency and correlated with increased growth rate. While these two LMM PBPs differentially alter the PG composition, their overlapping effects are essential to proper cell biology and expression of factors critical for pathogenesis. Required for gonococcal infection, Tfp mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the 3 pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3’ third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface- exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and extended Tfp are not required for competence. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. Attempts to identify the protease responsible for S-pilin cleavage were unsuccessful. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic variants and suggest there are alternate forms of the Tfp assembly apparatus that mediate various functions including transformation. 4 Acknowledgements As in all scientific pursuits, this work is the result of much collaboration, both in conception and execution. To everyone that has contributed to the success of this work in ways both large and small, thank you. Specifically, I would like to thank Dr. Joe Dillard and Dr. Ryan Schaub for providing plasmid pMR69 and performing and analyzing the peptidoglycan profiling experiments. The Tanner lab provided anti-PilE antibodies. Dr. Mark Anderson made the pilV::npt and comP::npt constructs, and Dr. Allison Criss isolated the P- antigenic variants used in these studies. Electron microscopy was performed at Northwestern’s Center for Advanced Microscopy and DNA sequencing was completed by The Genomics Core at the Northwestern Center for Genetic Medicine. I am grateful to the past and present members of the Seifert lab for paving the way and helping guide me along it: Dr. Paul Duffin, Dr. Laty Cahoon, Dr. Mark Anderson, Dr. Adrienne Chen, Kelly Kligne, Dr. Carl Gunderson, Dr. Ella Rotman, Dr. Jing Xu, Dr. Alice Chateau, Dr. Elizabeth Stohl, Dr. Linda Hu, Sarah Quillin, and Lauren Priniski. I owe a great debt to Kelly, Carl, and Lauren for improving my lab life on a daily basis. Thank you to Kavi Mehta and Chen Kam for advice, expanding my access to laboratory supplies, and after work drinks. I will forever be thankful for the friendship of Dr. Charlie Keenan and Liz Bacon who have made completing this difficult process immeasurably easier. Finally, none of this work would be possible without the incredible mentorship of Dr. Hank Seifert. Thank you for always giving me the leeway to make mistakes and always making sure that I learned from them. 5 List of Abbreviations (AA) – Amino acid (ATC) – Anhydrotetracycline (CFU) – Colony forming units (CRISPR) - Clustered, regularly interspaced, short palindromic repeat (DC) – Double complement (dsDNA) – Double-stranded DNA (DUS) – DNA uptake sequence (ELISA) – Enzyme-linked immunosorbent assay (G4) – Guanine quadruplex (GCB) – Gonococcal base (HGT) – Horizontal gene transfer (HLB) – Hydrophobic-Lipophilic-Balanced (HMM) – High molecular mass (HPLC) – High performance liquid chromatography (HVL) – Hyper-variable loop (HVT) – Hyper-variable tail (LMM) – Low molecular mass (LOS) – Lipooligosaccharide (mRNA) – Messenger RNA (ND) – Not determined (Ntd) – N-terminal domain 6 (Opa) – Opacity (PBP) – Penicillin binding proteins (PG) – Peptidoglycan (sRNA) – Small RNA (ssDNA) – Single-stranded DNA (SV) – Semi-variable region (TEM) – Transmission electron microscopy (TFA) – Trifluoracetic acid (Tfp) – Type IV pilus 7 Dedication To my family, both old and new, for their unwavering support. To my mother and father, Colleen and Mark Obergfell, for their constant love, my self-confidence, and their example and emphasis on hard work and the constant quest for knowledge. To my partner, best friend, and love of my life, Alexandra Kirsch, without whom none of this would have happened. Thank you for challenging and supporting me every day and being a constant source of happiness. 8 Statement of Publication Portions of the Abstract, Chapter 1, Chapter 3, and Chapter 5 have been published previously in the following reports: Obergfell KP, Seifert HS. The Pilin N-terminal Domain maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation. PLoS Genet. 2016;12(5): e1006069 Obergfell KP, Seifert HS. Mobile DNA in the pathogenic Neisseria. Microbiol Spectr. 2015;3(3):0015-2014. 9 Table of Contents Abstract .......................................................................................................................................... 2 Acknowledgements ....................................................................................................................... 4 List of Abbreviations .................................................................................................................... 5 Dedication ...................................................................................................................................... 7 Statement of Publication .............................................................................................................. 8 Table of Contents .......................................................................................................................... 9 List of Figures .............................................................................................................................. 13 List of Tables ............................................................................................................................... 15 Chapter 1: Introduction ............................................................................................................. 16 Introduction ............................................................................................................................... 16 Natural DNA transformation ..................................................................................................... 17 The Type IV pilus .................................................................................................................. 18 DNA uptake sequence ........................................................................................................... 21 Processing and recombination ............................................................................................... 24 Antigenic variation .................................................................................................................... 26 Introduction ........................................................................................................................... 26 Pilin antigenic variation ......................................................................................................... 28 Trans-acting factors important
Recommended publications
  • July 26, 2017 Bruker Daltonik Gmbh Mr. David Cromwick Director Of
    DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service __________________________________________________________________________________________________________________________ Food and Drug Administration 10903 New Hampshire Avenue Document Control Center – WO66-G609 Silver Spring, MD 20993-0002 July 26, 2017 Bruker Daltonik GmbH Mr. David Cromwick Director of Quality 40 Manning Rd Billerica, MA 01821 US Re: K163536 Trade/Device Name: MALDI Biotyper CA (MBT-CA) System, MBT smart CA System Regulation Number: 21 CFR 866.3361 Regulation Name: Mass spectrometer system for clinical use for the identification of microorganisms Regulatory Class: II Product Code: PEX Dated: December 16, 2016 Received: December 16, 2016 Dear Mr. Cromwick: We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading. If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls.
    [Show full text]
  • Proctitis Associated with Neisseria Cinerea Misidentified As Neisseria Gonorrhoeae in a Child JOHN H
    JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 1985, p. 575-577 Vol. 21, No. 4 0095-1137/85/040575-03$02.00/0 Copyright C 1985, American Society for Microbiology Proctitis Associated with Neisseria cinerea Misidentified as Neisseria gonorrhoeae in a Child JOHN H. DOSSETT,' PETER C. APPELBAUM,2* JOAN S. KNAPP,3 AND PATRICIA A. TOTTEN3 Departments ofPediatrics (Infectious Diseases)' and Pathology (Clinical Microbiology),2 Hershey Medical Center, Hershey, Pennsylvania 17033, and Neisseria Reference Laboratory and Department of Medicine, University of Washington, Seattle, Washington 981953 Received 21 September 1984/Accepted 13 December 1984 An 8-year-old boy developed proctitis. Rectal swabs yielded a Neisseria sp. that was repeatedly identified by API (Analytab Products, Plainview, N.Y.), Minitek (BBL Microbiology Systems, Cockeysville, Md.), and Bactec (Johnston Laboratories, Towson, Md.) methods as Neisseria gonorrhoeae. Subsequent testing in a reference laboratory yielded an identification of Neisseria cinerea. It is suggested that identification of a Neisseria sp. isolated from genital or rectal sites in a child be confirmed by additional serological, growth, and antibiotic susceptibility tests and, if necessary, by a reference laboratory. The implications of such misidenti- fications are discussed. Gonococcal proctitis in children is usually considered to rectal scrubs. The child and his parents underwent extensive be sexually transmitted, just as it is in adults. Moreover, questioning in an effort to identify a source of infection. No gonorrhea in young boys is generally the result of homosex- clues were found. Both parents had negative examinations ual contact with an adult male. We herein report the case of and negative cultures. The patient's condition gradually a child with prolonged proctitis and perianal inflammation improved, and by 20 July his rectum and perirectum ap- from whom Neisseria sp.
    [Show full text]
  • Neisseria Infection of Rhesus Macaques As a Model to Study Colonization, Transmission, Persistence, and Horizontal Gene Transfer
    Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer Nathan J. Weyanda,b,1, Anne M. Wertheimerc,d,e, Theodore R. Hobbsf,g, Jennifer L. Siskoa,b, Nyiawung A. Takua,b, Lindsay D. Gregstona,b, Susan Claryh, Dustin L. Higashia,b, Nicolas Biaisi,2, Lewis M. Browni,j, Shannon L. Planerg,k, Alfred W. Legasseg,k, Michael K. Axthelmg,k,l, Scott W. Wongg,h,l, and Magdalene Soa,b aBIO5 Institute and bDepartment of Immunobiology, University of Arizona, Tucson, AZ 85721; cArizona Center on Aging, dDepartment of Medicine and eDivision of Geriatrics General Internal and Palliative Medicine, University of Arizona, Tucson, AZ, 85719; fDivision of Animal Resources, kDivision of Pathobiology and Immunology, gOregon National Primate Research Center, and lVaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; hDepartment of Molecular Microbiology and Immunology, L220, Oregon Health and Science University, Portland, OR 97239; and iDepartment of Biological Sciences and jQuantitative Proteomics Center, Columbia University, New York, NY 10027 Edited by Rino Rappuoli, Novartis Vaccines and Diagnostics, Siena, Italy, and approved January 10, 2013 (received for review October 9, 2012) The strict tropism of many pathogens for man hampers the de- may be possible to develop a model for studying Neisseria–host velopment of animal models that recapitulate important microbe– interactions in which there are no host-restriction barriers to host interactions. We developed a rhesus macaque model for study- overcome. ing Neisseria–host interactions using Neisseria species indigenous to The rhesus macaque (RM) has ∼93% DNA sequence identity the animal.
    [Show full text]
  • Forensic Microbiology Reveals That Neisseria Animaloris Infections In
    www.nature.com/scientificreports OPEN Forensic microbiology reveals that Neisseria animaloris infections in harbour porpoises follow traumatic Received: 14 February 2019 Accepted: 20 September 2019 injuries by grey seals Published: xx xx xxxx Geofrey Foster 1, Adrian M. Whatmore2, Mark P. Dagleish3, Henry Malnick4, Maarten J. Gilbert5, Lineke Begeman6, Shaheed K. Macgregor7, Nicholas J. Davison1, Hendrik Jan Roest8, Paul Jepson7, Fiona Howie9, Jakub Muchowski2, Andrew C. Brownlow1, Jaap A. Wagenaar5,8, Marja J. L. Kik10, Rob Deaville7, Mariel T. I. ten Doeschate1, Jason Barley1,11, Laura Hunter1 & Lonneke L. IJsseldijk 10 Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically infamed bite wounds on pectoral fns and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the fnding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans.
    [Show full text]
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Oral Microbiome in HIV-Associated Periodontitis
    Oral microbiome in HIV-associated periodontitis. Marc Noguera-Julian, IrsiCaixa AIDS Research Institute Yolanda Guillén, IrsiCaixa AIDS Research Institute Jessica Peterson, Emory University David Reznik, Emory University Erica V. Harris, Emory University Sandeep J. Joseph, Emory University Javier Rivera, IrsiCaixa AIDS Research Institute Sunil Kannanganat, Emory University Rama Amara, Emory University Minhly Nguyen, Emory University Only first 10 authors above; see publication for full author list. Journal Title: Medicine Volume: Volume 96, Number 12 Publisher: Wolters Kluwer Health | 2017-03, Pages e5821-e5821 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1097/MD.0000000000005821 Permanent URL: https://pid.emory.edu/ark:/25593/s0xtw Final published version: http://dx.doi.org/10.1097/MD.0000000000005821 Copyright information: © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/). Accessed September 29, 2021 5:15 AM EDT ® Observational Study Medicine OPEN Oral microbiome in HIV-associated periodontitis ∗ Marc Noguera-Julian, PhDa,b,c, , Yolanda Guillén, PhDa,b, Jessica Peterson, BsCd, David Reznik, DDSd,e, Erica V. Harris, BsCf, Sandeep J. Joseph, PhDd, Javier Rivera, MsCa,c, Sunil Kannanganat, PhDd,g, Rama Amara, PhDd,g, Minh Ly Nguyen, MDd, Simon Mutembo, MDh, Roger Paredes, MD, PhDa,b,c,i, ∗ Timothy D. Read, PhDd, Vincent C. Marconi, MDd,g, Abstract HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV– individuals at different levels of PD severity.
    [Show full text]
  • Bacterial Diversity and Functional Analysis of Severe Early Childhood
    www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health.
    [Show full text]
  • Applications of Genomics to Slow the Spread of Multidrug‐Resistant
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Special Issue: Antimicrobial Therapeutics Reviews REVIEW Applications of genomics to slow the spread of multidrug-resistant Neisseria gonorrhoeae Tatum D. Mortimer 1 and Yonatan H. Grad 1,2 1Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts. 2Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts Address for correspondence: Yonatan H. Grad, Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Ave., Building 1, Room 715, Boston, MA 02115. [email protected] Infections with Neisseria gonorrhoeae, a sexually transmitted pathogen that causes urethritis, cervicitis, and more severe complications, are increasing. Gonorrhea is typically treated with antibiotics; however, N. gonorrhoeae has rapidly acquired resistance to many antibiotic classes, and lineages with reduced susceptibility to the currently recommended therapies are emerging worldwide. In this review, we discuss the contributions of whole genome sequencing (WGS) to our understanding of resistant N. gonorrhoeae. Genomics has illuminated the evolutionary origins and population structure of N. gonorrhoeae and the magnitude of horizontal gene transfer within and between Neisseria species. WGS can be used to predict the susceptibility of N. gonorrhoeae based on known resistance determinants, track the spread of these determinants throughout the N. gonorrhoeae population, and identify novel loci contributing to resistance. WGS has also allowed more detailed epidemiological analysis of transmission of N. gonorrhoeae between individuals and populations than previously used typing methods. Ongoing N.
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • 2020 European Guideline for the Diagnosis and Treatment of Gonorrhoea in Adults (Unemo M, Et Al
    Guidelines International Journal of STD & AIDS 0(0) 1–17 2020 European guideline for the diagnosis ! The Author(s) 2020 Article reuse guidelines: and treatment of gonorrhoea in adults sagepub.com/journals-permissions DOI: 10.1177/0956462420949126 journals.sagepub.com/home/std M Unemo1 , JDC Ross2, AB Serwin3, M Gomberg4, M Cusini5 and JS Jensen6 Abstract Gonorrhoea is a major public health concern globally. Increasing incidence and sporadic ceftriaxone-resistant cases, including treatment failures, are growing concerns. The 2020 European gonorrhoea guideline provides up-to-date evidence-based guidance regarding the diagnosis and treatment of gonorrhoea. The updates and recommendations emphasize significantly increasing gonorrhoea incidence; broad indications for increased testing with validated and quality-assured nucleic acid amplification tests and culture; dual antimicrobial therapy including high-dose ceftriaxone and azithromycin (ceftriaxone 1 g plus azithromycin 2 g) OR ceftriaxone 1 g monotherapy (ONLY in well-controlled settings, see guideline for details) for uncomplicated gonorrhoea when the antimicrobial susceptibility is unknown; recommendation of test of cure (TOC) in all gonorrhoea cases to ensure eradication of infection and identify resistance; and enhanced surveillance of treatment failures when recommended treatment regimens have been used. Improvements in access to appropriate testing, test performance, diagnostics, antimicrobial susceptibility surveillance and treatment, and follow-up of gonorrhoea patients are essential in controlling gonorrhoea and to mitigate the emergence and/or spread of ceftriaxone resistance and multidrug-resistant and extensively drug-resistant gonorrhoea. For detailed back- ground, evidence base and discussions, see the background review for the present 2020 European guideline for the diagnosis and treatment of gonorrhoea in adults (Unemo M, et al.
    [Show full text]
  • Atypical, Yet Not Infrequent, Infections with Neisseria Species
    pathogens Review Atypical, Yet Not Infrequent, Infections with Neisseria Species Maria Victoria Humbert * and Myron Christodoulides Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK; [email protected] * Correspondence: [email protected] Received: 11 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause. Keywords: Neisseria species; Neisseria meningitidis; Neisseria gonorrhoeae; commensal; pathogenesis; host adaptation 1.
    [Show full text]
  • Substantial Equivalence Determination Decision Summary
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) K163536 B. Purpose for Submission: To obtain a substantial equivalent determination for the MALDI Biotyper CA System. C. Measurand: See Intended Use. D. Type of Test: The MALDI Biotyper CA System is a qualitative in vitro diagnostic device intended for the identification of Gram-negative bacterial colonies cultured from human specimens. The device is comprised of an ionization source, a mass analyzer and a spectral database. The device is indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of Gram-negative bacterial infections. E. Applicant: Bruker Daltonik GmbH F. Proprietary and Established Names: Trade Name: MALDI Biotyper CA (MBT-CA) System, MBT smart CA System Common Names: MBT-CA, System, mass spectrometry G. Regulatory Information: 1. Regulation section: 21 CFR 866.3361 Instrumentation for clinical multiplex test systems 2. Classification: Class II (special controls) 3. Product code: PEX 4. Panel: Microbiology (83) H. Intended Use: 1. Intended use(s): The MALDI Biotyper CA System is a mass spectrometer system using matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) for the identification of microorganisms cultured from human specimens. The MALDI Biotyper CA System is a qualitative in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections. The following organisms are claimed: 1 Bacteria:
    [Show full text]