Abstract Resumen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Colony Formation in Three Species of the Family Scenedesmaceae
Colony formation in three species of the family Scenedesmaceae (Desmodesmus subspicatus, Scenedesmus acutus, Tetradesmus dimorphus) exposed to sodium dodecyl sulfate and its interference with grazing of Daphnia galeata Yusuke Oda ( [email protected] ) Shinshu University https://orcid.org/0000-0002-6555-1335 Masaki Sakamoto Toyama Prefectural University Yuichi Miyabara Shinshu University Research Article Keywords: Sodium dodecyl sulfate, Info-disruption, Colony formation, Scenedesmaceae, Daphnia Posted Date: March 30th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-346616/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Colony formation in three species of the family Scenedesmaceae (Desmodesmus subspicatus, 2 Scenedesmus acutus, Tetradesmus dimorphus) exposed to sodium dodecyl sulfate and its interference 3 with grazing of Daphnia galeata 4 5 Yusuke Oda*,1, Masaki Sakamoto2, Yuichi Miyabara3,4 6 7 1Department of Science and Technology, Shinshu University, Suwa, Nagano, Japan 8 2Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Toyama, 9 Japan 10 3Suwa Hydrobiological Station, Faculty of Science, Shinshu University, Suwa, Nagano, Japan 11 4Institute of Mountain Science, Shinshu University, Suwa, Nagano, Japan 12 13 *Corresponding author: Y. O da 14 15 Y. O d a 16 Phone: +81-90-9447-9029 17 Email: [email protected] 18 ORCID: 0000-0002-6555-1335 19 20 21 22 23 Acknowledgments 24 This study was supported by a Grant-in-Aid for Japan Society for the Promotion of Sciences (JSPS) 25 Fellows (Grant No. JP20J11681). We thank Natalie Kim, PhD, from Edanz Group (https://en-author- 26 services.edanz.com/ac) for editing a draft of this manuscript. -
[BIO32] the Development of a Biosensor for the Detection of PS II Herbicides Using Green Microalgae
The 4th Annual Seminar of National Science Fellowship 2004 [BIO32] The development of a biosensor for the detection of PS II herbicides using green microalgae Maizatul Suriza Mohamed, Kamaruzaman Ampon, Ann Anton School of Science and Technology, Universiti Malaysia Sabah, Locked Beg 2073, 88999 Kota Kinabalu, Sabah, Malaysia. Introduction Material & Methods Increasing concern over the presence of herbicides in water body has stimulated Equipments and Chemicals research towards the development of sensitive Fluorometer used was TD700 by Turner method and technology to detect herbicides Designs with 13mm borosilicate cuvettes. residue. Biosensors are particularly of interest Excitation and emission wavelength were for the monitoring of herbicides residue in 340nm-500nm and 665nm. Lamp was water body because various classes of daylight white (185-870nm). Equipment for herbicides have a common biological activity, photographing algae was Nikon which can potentially be used for their Photomicrographic Equipment, Model HIII detection. The most important herbicides are (Eclipse 400 Microscope and 35 mm film the photosystem II herbicide group that photomicrography; prism swing type, inhibits PSII electron transfer at the quinone automatic expose and built-in shutter). binding site resulting in the increase of Chlorophyll standards for fluorometer chlorophyll fluorescence (Merz et al., 1996) calibration were purchased from Turner . Designs, USA. PS II herbicides used were diuron (3-(3,4-dicholorophenyl)-1,1 Signal dimethylurea or DCMU), and propanil (3′,4′- PS II FSU herbicide dichloropropionanilide). Non PS II herbicides used as comparison were 2,4-D (2,4- Meter dichlorophenoxy)acetic acid) and Silvex Algal Chlorophyll Transducer (2,4,5-trichlorophenoxypropionic acid) (Aldrich Sigma). -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Diversity of the Genera of Chlorophyta in Fresh Waters of District Swat Nwfp
Pak. J. Bot., 43(3): 1759-1764, 2011. DIVERSITY OF THE GENERA OF CHLOROPHYTA IN FRESH WATERS OF DISTRICT SWAT N.W.F.P PAKISTAN ASGHAR ALI1, ZABTA KHAN SHINWARI2 AND MUHAMMAD KHAN LEGHARI3 1Department of Botany, G.P.G. Jahanzeb College Swat, Pakistan 2Department of Biotechnology, Quaid-e-Azam University Islamabad, Pakistan 3Pakistan Museum of Natural History, Islamabad, Pakistan Abstract Fifty six genera of green algae were collected from ten different localities of District Swat, belonging to 25 families and 9 genera of Chlorophyta from December 2006 August 2008. Family Oocystaceae with 39 species was most commonly found, next to it were families Scenedesmaceae with18 species and Desmidiaceae with 14 species. The genera Oocystis and Tetraedron were represented by 10 species and Cosmarium with 7 species occurred most commonly. Among the recorded genera 13 (23.2%) were Unicellular, 25 (44.6%) were Colonial, 9 (16.7%) were Unbranched filamentous, 4 (7.1%) were branched filamentous, 1 (1.7%) was Pseudofilamentous, 1 (1.7%) was Mesh-like, 2 (3.5%) were Heterotrichous and 1 (1.7%) was with Irregular amorphous thallus. Highest proportion of Chlorophycean members was recorded from Kanju area 89 and lowest was recorded from Kalam 69. Introduction Results and Discussion The Valley of Swat a part of Malakand Division covers Fifty six genera containing 138 species belonging to 25 5737 square kilometers (estimated). The elevation of the families and 9 orders have been collected from various fresh valley is 630 to 3000m above sea level. Swat is located at a water habitats. Collected algal members were identified up to distance of 170 km from Peshawar and 270 km from Federal species level. -
Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (Astap) in Scenedesmaceae
marine drugs Article Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (AstaP) in Scenedesmaceae Hiroki Toyoshima 1, Ami Miyata 1, Risako Yoshida 1, Taichiro Ishige 2, Shinichi Takaichi 3 and Shinji Kawasaki 1,3,* 1 Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] (H.T.); [email protected] (A.M.); [email protected] (R.Y.) 2 NODAI Genome Research Centre, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] 3 Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5477-2764 Abstract: Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP,were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we exam- ined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxida- Citation: Toyoshima, H.; Miyata, A.; tive stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal Yoshida, R.; Ishige, T.; Takaichi, S.; strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin. -
Altitudinal Zonation of Green Algae Biodiversity in the French Alps
Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, Amélie Saillard, Wilfried Thuiller, Jean-Gabriel Valay, Eric Marechal, Eric Coissac To cite this version: Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, et al.. Altitu- dinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, Frontiers, 2021, 12, pp.679428. 10.3389/fpls.2021.679428. hal-03258608 HAL Id: hal-03258608 https://hal.archives-ouvertes.fr/hal-03258608 Submitted on 11 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-12-679428 June 4, 2021 Time: 14:28 # 1 ORIGINAL RESEARCH published: 07 June 2021 doi: 10.3389/fpls.2021.679428 Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart1,2,3, Delphine Rioux3, Fréderic Boyer3, Ludovic Gielly3, François Pompanon3, Amélie Saillard3, Wilfried Thuiller3, Jean-Gabriel Valay2, Eric Maréchal1* and Eric Coissac3* on behalf of The ORCHAMP Consortium 1 Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France, 2 Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France, 3 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France Mountain environments are marked by an altitudinal zonation of habitat types. -
Permian–Triassic Non-Marine Algae of Gondwana—Distributions
Earth-Science Reviews 212 (2021) 103382 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Review Article Permian–Triassic non-marine algae of Gondwana—Distributions, natural T affinities and ecological implications ⁎ Chris Maysa,b, , Vivi Vajdaa, Stephen McLoughlina a Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Monash University, School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Clayton, VIC 3800, Australia ARTICLE INFO ABSTRACT Keywords: The abundance, diversity and extinction of non-marine algae are controlled by changes in the physical and Permian–Triassic chemical environment and community structure of continental ecosystems. We review a range of non-marine algae algae commonly found within the Permian and Triassic strata of Gondwana and highlight and discuss the non- mass extinctions marine algal abundance anomalies recorded in the immediate aftermath of the end-Permian extinction interval Gondwana (EPE; 252 Ma). We further review and contrast the marine and continental algal records of the global biotic freshwater ecology crises within the Permian–Triassic interval. Specifically, we provide a case study of 17 species (in 13 genera) palaeobiogeography from the succession spanning the EPE in the Sydney Basin, eastern Australia. The affinities and ecological im- plications of these fossil-genera are summarised, and their global Permian–Triassic palaeogeographic and stra- tigraphic distributions are collated. Most of these fossil taxa have close extant algal relatives that are most common in freshwater, brackish or terrestrial conditions, and all have recognizable affinities to groups known to produce chemically stable biopolymers that favour their preservation over long geological intervals. -
Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach
microorganisms Article Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach Veronika Sommer 1,2, Tatiana Mikhailyuk 3, Karin Glaser 1 and Ulf Karsten 1,* 1 Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; [email protected] (V.S.); [email protected] (K.G.) 2 upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany 3 National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community “biocrust” comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
In Vitro Stiumlation of Ergosterol from Coelastrella Terrestris by Using Squalene and Studying Antioxidant Effect
Sys Rev Pharm 2020;11(11):1795-1803 A multifaceted review journal in the field of pharmacy In Vitro Stiumlation of Ergosterol from Coelastrella Terrestris by Using Squalene and Studying Antioxidant Effect Altaf AL-Rawi, Fikrat M. Hassan* and Bushra M.J.Alwash Department of Biology, College of Science for Women, University of Baghdad, Baghdad – Iraq *Corresponding author: [email protected] ABSTRACT Ergosterol is one of the most important chemicals produced by algae, specifically Keywords: Algae, Chlorophyceae, Coelastrella, Squalene, Secondary products, by microalgae, and the Squalene is the commonly known as a precursor for Antioxidant. biosynthesis of ergosterol. Coelastrella terrestris was isolated from sediment sample collected from the banks of Tigris River and the modified Chu 10 culture Correspondence: medium was used for algal growth and determining the optimum growth Fikrat M. Hassan condition (25) °C and 268 µE. mˉ². secˉ¹). In an attempt to further maximize Department of Biology, College of Science for Women, University of Baghdad, ergosterol production by C. terrestris. The optimal temperature and light growth Baghdad10070 – Iraq. conditions 30 ºC and 300 µE. mˉ².secˉ¹ were tested under of different Squalene Email: [email protected] concentrations treatments (0.1, 0.25, 0.5 and 1٪). This combined treatment of optimal culture conditions and Squalene was caused an extremely a highest ergosterol production recorded (533.3 ± 15.92 ppm) at 1% squalene in phase 2, while the lowest production (54.3 ± 2.48ppm) was at 0.10% Squalene in phase3. The present study has further investigated the potential antioxidant activity of C. terrestis crude extract and ergosteoleby the ability to scavenging free radical 2.2 diphenyl-1-picrylhydrzyl (DPPH). -
The Draft Genome of Hariotina Reticulata (Sphaeropleales
Protist, Vol. 170, 125684, December 2019 http://www.elsevier.de/protis Published online date 19 October 2019 ORIGINAL PAPER Protist Genome Reports The Draft Genome of Hariotina reticulata (Sphaeropleales, Chlorophyta) Provides Insight into the Evolution of Scenedesmaceae a,b,2 c,d,2 b e f Yan Xu , Linzhou Li , Hongping Liang , Barbara Melkonian , Maike Lorenz , f g a,g e,1 a,g,1 Thomas Friedl , Morten Petersen , Huan Liu , Michael Melkonian , and Sibo Wang a BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China b BGI Education Center, University of Chinese Academy of Sciences, Beijing, China c China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China d Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark e University of Duisburg-Essen, Campus Essen, Faculty of Biology, Universitätsstr. 5, 45141 Essen, Germany f Department ‘Experimentelle Phykologie und Sammlung von Algenkulturen’ (EPSAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany g Department of Biology, University of Copenhagen, Copenhagen, Denmark Submitted October 9, 2019; Accepted October 13, 2019 Hariotina reticulata P. A. Dangeard 1889 (Sphaeropleales, Chlorophyta) is a common member of the summer phytoplankton of meso- to highly eutrophic water bodies with a worldwide distribution. Here, we report the draft whole-genome shotgun sequencing of H. reticulata strain SAG 8.81. The final assembly comprises 107,596,510 bp with over 15,219 scaffolds (>100 bp). This whole-genome project is publicly available in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb under the accession number CNP0000705. © 2019 Elsevier GmbH. All rights reserved. Key words: Scenedesmaceae; genome; algae; comparative genomics. -
Chlorophyta: Scenedesmaceae) in Bulgaria
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck Jahr/Year: 2008 Band/Volume: 95 Autor(en)/Author(s): Gärtner Georg, Stoyneva Maya P., Kofler Werner, Uzunov Blagoy Angelov Artikel/Article: First record of Coelastrella species (Chlorophyta: Scenedesmaceae) in Bulgaria. 27-34 ©Naturwiss. med. Ver. Innsbruck, download unter www.biologiezentrum.at Ber. nat.-med. Verein Innsbruck Band 95 S. 27 - 34 Innsbruck, Dez. 2008 First record of Coelastrella species (Chlorophyta: Scenedesmaceae) in Bulgaria by Blagoy A. UZUNOV, Maya P. STOYNEVA, Georg GÄRTNER & Werner KOFLER *) Synopsis: The present paper provides information on the first finding of two green algal spe- cies of the genus Coelastrella (C. terrestris (REISIGL) HEGEWALD et HANAGATA and C. aeroterrestri- ca TSCHAIKNER,GÄRTNER et KOFLER) from different soils of Pirin Mt (Bulgaria) with data on their morphology in light microscope (LM) and in scanning electron microscope (SEM). Comparison with the same species from alpine soils in Tyrol (Austria) was done and the establishment of C. aeroter- restrica as a good species was proved. It is supposed that further careful investigations of algal cul- tures from soil will reveal the broader distribution of both species in Bulgaria and other countries in Europe. Ke y w o r d s : soil algae, Coelastrella terrestris, Coelastrella aeroterrestrica, green algae, Pirin Mt, Bulgaria 1. Introduction: The earliest investigation of the soil algae in Bulgaria could be traced back to the end of 19th century, when Botrydium granulatum (GREV.) FISCHER was recorded by PETKOFF (1898-1899). Since then 228 species, 17 varieties and 10 forms of soil algae have been reported for the country by different authors (detailed list of references and taxa is availa- ble in UZUNOV et al.