Symbiotic Specificity and Nodulation in the Southern African Legume Clade Lotononis S

Total Page:16

File Type:pdf, Size:1020Kb

Symbiotic Specificity and Nodulation in the Southern African Legume Clade Lotononis S Symbiotic specificity and nodulation in the southern African legume clade Lotononis s. l. and description of novel rhizobial species within the Alphaproteobacterial genus Microvirga by Julie Kaye Ardley This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2011 DECLARATION I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Julie Kaye Ardley ii TABLE OF CONTENTS Publications arising from this thesis………………………………………………….ix Acknowledgements……………………………………………………………………………x Abstract…………………………………………………………………………………………..xii Chapter 1: Introduction and literature review……………………………………1 1.1 The legume-rhizobia symbiosis….……………….…….……………………………………..………..3 1.2 The legume-rhizobia symbiosis in Australian agriculture.………………………….……….4 1.2.1 Background…………………………………………………………………………………….…….…..4 1.3 Legumes.……….……………………………………………………………………………………..……….….6 1.3.1 Evolution of legumes…………………………………………….……….…………….…….…….6 1.3.2 Legume taxonomy and phylogeny………………………………………………….…………7 1.3.2.1 Phylogeny of the Papilionoideae…………………………….………….…………..….8 1.4 Rhizobia…..…………………………………………………………………….………………………………..11 1.4.1 History of rhizobial classification……………………………………………………...……..11 1.5 Bacterial systematics….……………………….…………….………………………………….….……..13 1.5.1 Genotypic classification methods………………………………………………..…….……15 1.5.2 Phylogenetic classification methods…………………..…………………..………….…..15 1.5.3 Phenotypic classification methods………………………………………..…..…………...18 1.5.4 The effect of lateral gene transfer on bacterial phylogeny…………………...…19 1.6 General recommendations for classifying and describing bacteria……….………….21 1.7 Rhizobial symbiotic genes………………………………………………………..………………………23 1.7.1 The role of nodulation genes and Nod factors…………………………………………24 1.8 Rhizobial infection and nodule formation in legumes………………………………………25 1.8.1 Infection pathways in legumes……………………………..…………………………….…..26 iii 1.8.2 Nodule types………………………………………………………..……………………….………..29 1.8.2.1 Formation and structure of nodules infected via infection threads………………………………………………………………………………………….…….……….30 1.8.2.2 Formation and structure of intercellularly infected nodules …………….31 1.9 Specificity and effectiveness in the legume-rhizobia symbiosis………………………..32 1.10 The Lotononis s. l. clade………………………………………………………………………………...34 1.10.1 The genus Listia …………………………………………………………………………………....36 1.10.2 The genus Leobordea …………………………………………………………………….………37 1.10.3 The genus Lotononis s. str ……………………………………………………………………..38 1.11. The Lotononis s. l. -rhizobia symbiosis…………………………………………………………..39 1.12 Summary of current knowledge of the symbiotic relationships between Lotononis s. l . and associated rhizobia……………………………………………………………………44 1.13 Aims of this thesis…………………………………………………………………………………….……46 Chapter 2: Determining symbiotic specificity within Lotononis s.l. …. 47 2.1 Introduction…………………………………………………………………………………………………….49 2.1.1 Background……………………………………………………………………………………………..49 2.1.2 Experimental approach……………………………………………………………………………50 2.2 Materials and methods…………………………………………………………………………………...53 2.2.1 Rhizobial strains………………………………………………………………………………………53 2.2.2 Host plants………………………………………………………………………………………………53 2.2.3 Glasshouse experimental design……………………………………………………………..55 2.2.4 General glasshouse procedures……………………………………………………………….58 2.2.4.1 Preparation of plant material……………………………………………………………59 2.2.4.2 Preparation of inoculum……………………………………………………………………60 2.2.4.3 Harvesting…………………………………………………………………………………………61 2.2.5 Statistics………………………………………………………………………………………………….61 2.2.6 Molecular fingerprinting………………………………………………………………………….61 2.2.7 Amplification and sequencing of 16S rRNA genes……………………………………63 2.2.8 Amplification and sequencing of nodA genes………………………………………….66 2.3 Results……………………………………………………………………………………………………………..68 iv 2.3.1 Selection of inoculant strains………………………………………………………………..…68 2.3.1.1 Selection of a representative Listia angolensis strain………………...……..68 2.3.1.2 Authentication of non-pigmented Lotononis s. l. strains……………………69 2.3.2 Symbiotic interactions of Lotononis s. l. species with phylogenetically diverse Lotononis s. l. rhizobia………………………………………………………………………….71 2.3.3 Symbiotic specificity within Listia species………………………………………………..75 2.3.4 Nodule structure in Lotononis s. l. species……………………………………………….75 2.3.5 Amplification and sequencing of 16S rRNA genes……………………………………77 2.3.6 Amplification and sequencing of nodA …………………………………………………….84 2.3.6.1 nodA sequences of WSM2598 and WSM2667…………………………………..84 2.3.6.2 nodA sequences of the remaining Lotononis s. l. rhizobia…………………85 2.4 Discussion………………………………………………………………………………………………………..90 2.4.1 Nodule structure in Lotononis s. l. species……………………………………………….90 2.4.2. Diversity of Lotononis s. l. rhizobia………………………………………………………….90 2.4.2 1 The Methylobacterium lineage………………………………………………………….91 2.4.2.2 The Microvirga lineage……………………………………………………………………..93 2.4.2.3 The Bradyrhizobium , Ensifer and Mesorhizobium lineages…………….….94 2.4.3 Symbiotic relationships within Lotononis s. l. hosts………………………………...96 2.4.4 Phylogeny of nodA genes…………………………………………………………………………98 2.4.5 Environmental factors that may be effectors of diversification in rhizobia associated with Lotononis s. l. species……………………………………………………………103 2.4.6 Putative evolution of symbiotic patterns within Lotononis s. l. …………….107 Chapter 3 Nodule structure in Lotononis s. l. species and infection and nodule formation in Listia angolensis and Listia bainesii …………….….111 3.1 Introduction…………………………………………………………………………………………………..113 3.1.1 Modes of infection and nodulation in legumes……………………………………..113 3.2 Materials and methods………………………………………………………………………………….115 3.2.1 Legume hosts, bacterial inoculant strains and growth conditions………….115 3.2.2 Harvesting……………………………………………………………………………………………..117 3.2.3 Nodule initial staining and sectioning, nodule sectioning and light microscopy…………………………………………………………………………………………………....118 v 3.3 Results……………………………………………………………………………………………………………119 3.3.1. Localisation of infection site…………………………………………………………………119 3.3.2 Infection and nodule organogenesis in Listia angolensis and Listia bainesii …………………………………………………………………………………………………………..121 3.3.3 Localisation of the infection site in Listia angolensis and Listia bainesii plants inoculated at 85 days old…………………………………………………………………….124 3.3.4 Internal structure of Lotononis s. l. nodules…………………………………………..125 3.4 Discussion………………………………………………………………………………………………………128 Chapter 4 Characterisation and description of novel Listia angolensis and Lupinus texensis rhizobia……………………………………..…………………133 4.1 Introduction…………………………………………………………………………………………………..135 4.2 Materials and methods………………………………………………………………………………….137 4.2.1 Bacterial strains and culture conditions…………………………………………………137 4.2.2 DNA amplification and sequencing………………………………………………………..137 4.2.2.1 Amplification and sequencing of the 16S rRNA gene………………………137 4.2.2.2 Amplification and sequencing of the nodA gene…………………………….139 4.2.3 Phenotypic characterisation………………………………………………………………….139 4.2.3.1 Morphology…………………………………………………………………………………….139 4.2.3.2 Extraction of pigments……………………………………………………………………140 4.2.3.3 Temperature range…………………………………………………………………………141 4.2.3.4 Optimal growth temperature………………………………………………………….141 4.2.3.5 Growth curves and determination of mean generation time………….141 4.2.3.6 Determination of sodium chloride and pH tolerance………………………141 4.2.3.7 Anaerobic growth……………………………………………………………………………143 4.2.3.8 Antibiotic sensitivity……………………………………………………………………….143 4.2.3.9 Substrate utilisation………………………………………………………………………..144 4.2.3.9.1 Utilisation of sole carbon sources in Biolog GN2 plates…………….144 4.2.3.9.2 Utilisation of substrates in Biolog Phenotype Microarray plates……………………………………………………………………………………………………..144 4.2.3.9.3 Growth on sole carbon substrates……………………………………………145 4.2.3.10 Biochemical characterisation………………………………………………………..147 vi 4.2.4 Host range…………………………………………………………………………………………….148 4.3 Results……………………………………………………………………………………………………………149 4.3.1 Amplification and sequencing of the 16S rRNA gene……………………………..149 4.3.2 Amplification and sequencing of nodA …………………………………………………..151 4.3.3 Phenotypic characterisation………………………………………………………………….153 4.3.3.1 Morphology…………………………………………………………………………………….153 4.3.3.2 Characterisation of pigments………………………………………………………….155 4.3.3.3 Growth characteristics……………………………………………………………………156 4.3.3.4 Antibiotic sensitivity……………………………………………………………………….156 4.3.3.5 Substrate utilisation………………………………………………………………………..158 4.3.3.5.1 Utilisation of sole carbon sources in Biolog GN2 plates…………….158 4.3.3.5.2 Utilisation of substrates in Biolog Phenotype Microarray plates………………………………………………………………………………………………………162 4.3.3.5.3 Growth in sole carbon substrate broths……………………………………168 4.3.3.6 Biochemical characterisation………………………………………………………….169 4.3.4 Host range…………………………………………………………………………………………….171 4.4 Discussion………………………………………………………………………………………………………173 4.4.1 Genotypic characterisation of novel Microvirga species………………………..173 4.4.2 G+C content, DNA:DNA hybridisation and cellular fatty acid analysis…….176 4.4.3 Phenotypic characterisation of novel Microvirga species………………………176 4.4.3.1 Substrate utilisation………………………………………………………………………..181 4.4.3.1.1 Critique of the use of Biolog plates in determining substrate utilisation………………………………………………………………………………………………..181 4.4.3.1.2 Substrate utilisation in Listia angolensis and Lupinus texensis strains
Recommended publications
  • Isolation and Identification of Microvirga Thermotolerans HR1, A
    microorganisms Article Isolation and Identification of Microvirga thermotolerans HR1, a Novel Thermo-Tolerant Bacterium, and Comparative Genomics among Microvirga Species Jiang Li 1,2, Ruyu Gao 2, Yun Chen 2, Dong Xue 2, Jiahui Han 2, Jin Wang 1,2, Qilin Dai 1, Min Lin 2, Xiubin Ke 2,* and Wei Zhang 2,* 1 School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; [email protected] (J.L.); [email protected] (J.W.); [email protected] (Q.D.) 2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (R.G.); [email protected] (Y.C.); [email protected] (D.X.); [email protected] (J.H.); [email protected] (M.L.) * Correspondence: [email protected] (X.K.); [email protected] (W.Z.) Received: 27 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: Members of the Microvirga genus are metabolically versatile and widely distributed in Nature. However, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. Herein, a novel thermo-tolerant bacterium named Microvirga thermotolerans HR1 was isolated and identified. Based on the 16S rRNA gene sequence analysis, the strain HR1 belonged to the genus Microvirga and was highly similar to Microvirga sp. 17 mud 1-3. The strain could grow at temperatures ranging from 15 to 50 ◦C with a growth optimum at 40 ◦C. It exhibited tolerance to pH range of 6.0–8.0 and salt concentrations up to 0.5% (w/v). It contained ubiquinone 10 as the predominant quinone and added group 8 as the main fatty acids.
    [Show full text]
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Genome Sequence of Microvirga Lupini Strain LUT6(T), a Novel Lupinus Alphaproteobacterial Microsymbiont from Texas
    Binghamton University The Open Repository @ Binghamton (The ORB) Biological Sciences Faculty Scholarship Biological Sciences 2014 Genome sequence of Microvirga lupini strain LUT6(T), a novel Lupinus alphaproteobacterial microsymbiont from Texas Wayne Reeve Matthew Parker Binghamton University--SUNY Rui Tian Lynne Goodwin Hazuki Teshima See next page for additional authors Follow this and additional works at: https://orb.binghamton.edu/bio_fac Part of the Biology Commons Recommended Citation Reeve, Wayne; Parker, Matthew; Tian, Rui; Goodwin, Lynne; Teshima, Hazuki; Tapia, Roxanne; Han, Cliff; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; and Kyrpides, Nikos, "Genome sequence of Microvirga lupini strain LUT6(T), a novel Lupinus alphaproteobacterial microsymbiont from Texas" (2014). Biological Sciences Faculty Scholarship. 16. https://orb.binghamton.edu/bio_fac/16 This Article is brought to you for free and open access by the Biological Sciences at The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Biological Sciences Faculty Scholarship by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact [email protected]. Authors Wayne Reeve, Matthew Parker, Rui Tian, Lynne Goodwin, Hazuki Teshima, Roxanne Tapia, Cliff Han, James Han, Konstantinos Liolios, Marcel Huntemann, Amrita Pati, Tanja Woyke, Konstantinos Mavromatis, Victor Markowitz, Natalia Ivanova, and
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Murdoch Bulletin 3.04 Nodule Bacteria HR
    BULLETIN 3.04 Crop Production & Biosecurity 2015 RESEARCH FINDINGS in the School of VETERINARY & LIFE SCIENCES WAYNE REEVE, JULIE ARDLEY & RUI TIAN Sequencing 100 bacterial genomes: the GEBA-RNB project itrogen is needed by all forms of life available form of ammonia within a Creek, California, have spearheaded a Nas it is an essential building block of specialised organ, the nodule (Figure 1). global effort, coordinated by Dr Wayne DNA, RNA and proteins. SNF agricultural inputs are both cheaper Reeve (CRS), to sequence the genomes and more environmentally sustainable. In of over 100 root nodule bacteria strains. Nitrogen is a critical element in plant Australia, the nitrogen fi xed by RNB in The ultimate goal will be to extend this growth, and since the 1950s, the fi ve-fold symbiosis with pasture and pulse legumes symbiosis to other agricultural crops, increase in the input of chemical nitrogen is worth approximately $4 billion annually. including cereals. fertilizers has allowed rapid increases in agricultural production. However, this To meet the challenge of providing Methods and results use of chemical nitrogen has come at a environmentally sustainable increases in The Genomic Encyclopedia of Bacteria and high and environmentally unsustainable food production for the growing world Archaea — Root Nodule Bacteria (GEBA- cost: increased fossil fuel use, emission of population, we need to maximise the RNB) joint venture is the largest-ever root greenhouse gases, environmental pollution, nitrogen-fi xing potential of the legume- nodule bacterial genome sequencing and loss of biodiversity. rhizobia symbiosis, as this can vary project. This joint venture has been signifi cantly (Figure 2).
    [Show full text]
  • HIGHLY SPECIFIC HOSTS in the Llstia SECTION of the LEGUME
    uk L ~ PA - 1 - 006 ~ PA - 1 - 007 HIGHLY SPECIFIC HOSTS IN EVALUATION OF COWPEA THE LlSTIA SECTION OF THE BREEDING LINES FOR NITROGEN LEGUME GENUS LOTONONIS FIXATRION AT ARC-GRAIN CROPS ARE NODULATED BY INSTITUTE, POTCHEFSTROOM, METHYLOBACTERIA AND BY NOVEL SOUTH AFRICA ISOLATES THAT ARE A NEW GENUS OF ROOT NODULE BACTERIA Joseph A. N. Asiwe*t, Alphonsus Belane**, Felix D. Dakora** Julie K. Ardley, Graham W. O'Hara*, Wayne G. Reeve*, Ron J. Yates', Michael J. Dilworth, John G. Howieson' • ARC-Grain Crops Institute, Private Mail Bag X1251, Potchefstroom 2520, South Africa H Tshwane University of Technology, Pretoria, South Africa Centre for Rhizobium Studies, Murdoch University, Murdoch W. A. 6150, Australia; [email protected] Cowpea, Vigna unguiculata (L.) Walp, is one of the important grain legumes in South Africa. It is an important source of cheap plant Symbiotic specificity and nodule morphology are characteristics that protein to most poor families, provides regular income to farmers can be used as taxonomic markers in the legume genus Lotononis for the sale of grain and fodder, and a good source of animal fodder. and that support its division into two separate genera. Lotononis In addition, cowpea is good for the sustainability of soil fertility (from the Crotalarieae tribe in the Genistoid clade of the sub-family through biological nitrogen fixation. The amount of biologically Fabaceae) is of mainly southern African origin, comprising some 150 fixed nitrogen can be enhanced by different methods, induding species of herbs and small shrubs. Our work has shown that Lotononis inoculation with proven strains, screening for improved microbial is nodulated by phylogenetically diverse root nodule bacteria and and host-plant materials, and introduction of improved cultural that different specificity groups exist within the genus.
    [Show full text]
  • Reconstructing the Deep-Branching Relationships of the Papilionoid Legumes
    SAJB-00941; No of Pages 18 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Reconstructing the deep-branching relationships of the papilionoid legumes D. Cardoso a,⁎, R.T. Pennington b, L.P. de Queiroz a, J.S. Boatwright c, B.-E. Van Wyk d, M.F. Wojciechowski e, M. Lavin f a Herbário da Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil b Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH5 3LR Edinburgh, UK c Department of Biodiversity and Conservation Biology, University of the Western Cape, Modderdam Road, \ Bellville, South Africa d Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, 2006 Auckland Park, Johannesburg, South Africa e School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA f Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA article info abstract Available online xxxx Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume Edited by J Van Staden subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Keywords: Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- Leguminosae ships of the early-branching lineages due to limited sampling.
    [Show full text]
  • Microvirga Massiliensis
    Microvirga massiliensis sp nov., the human commensal with the largest genome Aurelia Caputo, Jean-Christophe Lagier, Said Azza, Catherine Robert, Donia Mouelhi, Pierre-Edouard Fournier, Didier Raoult To cite this version: Aurelia Caputo, Jean-Christophe Lagier, Said Azza, Catherine Robert, Donia Mouelhi, et al.. Mi- crovirga massiliensis sp nov., the human commensal with the largest genome. MicrobiologyOpen, Wiley, 2016, 5 (2), pp.307-322. 10.1002/mbo3.329. hal-01459554 HAL Id: hal-01459554 https://hal.archives-ouvertes.fr/hal-01459554 Submitted on 10 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH Microvirga massiliensis sp. nov., the human commensal with the largest genome Aurélia Caputo1, Jean-Christophe Lagier1, Saïd Azza1, Catherine Robert1, Donia Mouelhi1, Pierre-Edouard Fournier1 & Didier Raoult1,2 1Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, CNRS, UMR 7278 – IRD 198, Faculté de médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France 2Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Keywords Abstract Culturomics, large genome, Microvirga T massiliensis, taxonogenomics Microvirga massiliensis sp.
    [Show full text]
  • International Committee on Systematics Of
    ICSP - MINUTES de Lajudie and Martinez-Romero, Int J Syst Evol Microbiol 2017;67:516– 520 DOI 10.1099/ijsem.0.001597 International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 7 September 2014, Tenerife, Spain Philippe de Lajudie1,* and Esperanza Martinez-Romero2 MINUTE 1. CALL TO ORDER (Chinese Agricultural University, Beijing, China) was later elected (online, November 2015) as a member of the subcom- The closed meeting was called by the Chairperson, E. Marti- mittee. It was agreed to invite representative scientist(s) from nez-Romero, at 14:00 on 7 September 2014 during the 11th Africa who have published validated novel rhizobial/agrobac- European Nitrogen Fixation Conference in Costa Adeje, Ten- terial species descriptions to become members of the subcom- erife, Spain. mittee. Several tentative names came up. MINUTE 2. RECORD OF ATTENDANCE MINUTE 6. THE HOME PAGE The members present were J. P. W. Young, E. Martinez- The website of the subcommittee can be accessed at http:// Romero, P. Vinuesa, B. Eardly and P. de Lajudie. K. Lind- edzna.ccg.unam.mx/rhizobialtaxonomy. It would be very ström was represented by S. A. Mousavi. All subcommittee useful to list genome sequenced type strains on the website. members had the opportunity to participate in the online discussions. K. Lindström, secretary of the subcommittee since 1996, resigned from this responsibility, but expressed MINUTE 7. GUIDELINES FOR THE her willingness to continue to act as an active subcommittee DESCRIPTION OF NEW TAXA member. P. Vinuesa agreed to act as a temporary secretary Some years ago, E.
    [Show full text]
  • Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium
    PLANT MICROBIOLOGY crossm Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium, and Bradyrhizobium Nodulate Lupinus micranthus Growing in Soils of Northern Tunisia Downloaded from Abdelhakim Msaddak,a David Durán,b Mokhtar Rejili,a Mohamed Mars,a Tomás Ruiz-Argüeso,c Juan Imperial,b,c José Palacios,b Luis Reyb Research Unit Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabès Erriadh, Zrig,Tunisiaa; Centro de Biotecnología y Genómica de Plantas (UPM-INIA), ETSI Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spainb; CSIC, Madrid, Spainc http://aem.asm.org/ ABSTRACT The genetic diversity of bacterial populations nodulating Lupinus micran- Received 10 October 2016 Accepted 3 thus in five geographical sites from northern Tunisia was examined. Phylogenetic January 2017 analyses of 50 isolates based on partial sequences of recA and gyrB grouped strains Accepted manuscript posted online 6 into seven clusters, five of which belong to the genus Bradyrhizobium (28 isolates), January 2017 one to Phyllobacterium (2 isolates), and one, remarkably, to Microvirga (20 isolates). Citation Msaddak A, Durán D, Rejili M, Mars M, Ruiz-Argüeso T, Imperial J, Palacios J, Rey L. The largest Bradyrhizobium cluster (17 isolates) grouped with the B. lupini species, 2017. Diverse bacteria affiliated with the and the other five clusters were close to different recently defined Bradyrhizobium genera Microvirga, Phyllobacterium, and Bradyrhizobium nodulate Lupinus micranthus on March 2, 2017 by guest species. Isolates close to Microvirga were obtained from nodules of plants from growing in soils of northern Tunisia. Appl four of the five sites sampled.
    [Show full text]
  • Le 23 Novembre 2017 Par Aurélia CAPUTO
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE T H È S E Présentée et publiquement soutenue à l'IHU – Méditerranée Infection Le 23 novembre 2017 Par Aurélia CAPUTO ANALYSE DU GENOME ET DU PAN-GENOME POUR CLASSIFIER LES BACTERIES EMERGENTES Pour obtenir le grade de Doctorat d’Aix-Marseille Université Mention Biologie - Spécialité Génomique et Bio-informatique Membres du Jury : Professeur Antoine ANDREMONT Rapporteur Professeur Raymond RUIMY Rapporteur Docteur Pierre PONTAROTTI Examinateur Professeur Didier RAOULT Directeur de thèse Unité de recherche sur les maladies infectieuses et tropicales émergentes, UM63, CNRS 7278, IRD 198, Inserm U1095 Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’École Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, les parties introductions et bibliographies sont remplacées par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Universidade Federal Do Rio Grande Do Sul Instituto De Biociências Programa De Pós-Graduação Em Ecologia
    Universidade Federal do Rio Grande do Sul Instituto de Biociências Programa de Pós-Graduação em Ecologia Tese de Doutorado Estrutura filogenética e funcional de comunidades vegetais a partir de ecologia reprodutiva: padrões espaciais e temporais. Guilherme Dubal dos Santos Seger Porto Alegre, Maio de 2015 Estrutura filogenética e funcional de comunidades vegetais a partir de ecologia reprodutiva: padrões espaciais e temporais. Guilherme Dubal dos Santos Seger Tese de Doutorado apresentada ao Programa de Pós- Graduação em Ecologia, do Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como parte dos requisitos para obtenção do título de Doutor em Ciências com ênfase em Ecologia Orientador: Prof. Dr. Leandro da Silva Duarte Comissão examinadora: Prof. Dr. Valério De Patta Pillar (UFRGS) Prof. Dr. Fernando Joner (UFFS) Prof. Dr. Marcus V. Cianciaruso (UFG) Porto Alegre, Maio de 2015 Agradecimentos Nesses últimos quatro anos posso dizer que a vida foi intensa, que muitas coisas que projetei realizar ao longo do doutorado não foram executadas, mas que diversas outras não esperadas aconteceram. Hoje consigo olhar para atrás e perceber os enormes passos que dei pessoalmente e profissionalmente. Contudo, tenho certeza que minhas realizações não foram atingidas sozinho, mas com a parceria de pessoas especiais que dedicaram sua energia e tempo para me ajudar. Agradeço de coração a todos que me ensinaram ciência e lições de vida. Esta tese não teria acontecido sem o apoio da minha família. Minha parceira e paixão Evelise Bach, não tenho palavras para descrever minha satisfação em dividir a minha vida com você. Obrigado pelo carinho, cumplicidade, pelos puxões de orelhas e por sempre acreditar em mim.
    [Show full text]