Estudo Histológico E Molecular Dos Efeitos Da Exposição Ao Material Particulado Inalável Fino Da Cidade De São Paulo Nos Testículos De Camundongos

Total Page:16

File Type:pdf, Size:1020Kb

Estudo Histológico E Molecular Dos Efeitos Da Exposição Ao Material Particulado Inalável Fino Da Cidade De São Paulo Nos Testículos De Camundongos CATARINA GOMES CANI Estudo histológico e molecular dos efeitos da exposição ao material particulado inalável fino da cidade de São Paulo nos testículos de camundongos Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutora em Ciências Programa de Endocrinologia Orientadora: Profa. Dra. Elaine Maria Frade Costa Versão corrigida São Paulo 2017 iii Dedicatória À minha família. Aos que se interessam pelos impactos dos poluentes na saúde e no meio ambiente. iv Agradecimentos Agradeço a todos que de alguma forma contribuíram para a realização deste trabalho. À Drª Elaine Costa, pela orientação. À Disciplina de Endocrinologia da Faculdade de Medicina da USP, à colega de pós-graduação Isabela Pacetti pela ajuda com as extrações e, especialmente, à Drª Éricka Trarbach por todo apoio nas análises de expressão e revisões de texto. À Disciplina de Patologia da Faculdade de Medicina da USP. Ao Laboratório de Poluição Atmosférica Experimental. A todos os pós-graduandos e alunos de iniciação científica que participaram dos cuidados aos animais, das exposições e das coletas. À colega de pós-graduação Marlise Di Domenico pela ajuda com os dados compartilhados, com os blocos, com as lâminas, com as colorações, com as discussões sobre os temas. Especialmente, à Drª Mariana Veras por toda ajuda. Ao Departamento de Cirurgia da Faculdade de Medicina Veterinária e Zootecnia da USP, onde foram realizados os preparos das lâminas. Ao Laboratório de Genômica Funcional do Centro de Investigação Translacional em Oncologia do Instituto do Câncer de São Paulo Octavio Frias de Oliveira (ICESP), onde foram realizadas as leituras das análises de expressão gênica. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelo apoio financeiro. v Esta tese está de acordo com as seguintes normas, em vigor no momento desta publicação: Referências: adaptado de International Committee of Medical Journals Editors (Vancouver). Universidade de São Paulo. Faculdade de Medicina. Divisão de Biblioteca e Documentação. Guia de apresentação de dissertações, teses e monografias. Elaborado por Anneliese Carneiro da Cunha, Maria Julia de A. L. Freddi, Maria F. Crestana, Marinalva de Souza Aragão, Suely Campos Cardoso, Valéria Vilhena. 3a ed. São Paulo: Divisão de Biblioteca e Documentação; 2011. Abreviaturas dos títulos dos periódicos de acordo com List of Journals Indexed in Index Medicus. vi SUMÁRIO LISTA DE FIGURAS ix LISTA DE TABELAS xii LISTA DE ABREVIATURAS, SÍMBOLOS E SIGLAS xiv RESUMO xx ABSTRACT xxi 1. INTRODUÇÃO ____________________________________________ 1 2. POLUIÇÃO ATMOSFÉRICA __________________________________ 4 2.1 Histórico ________________________________________________ 5 2.2 Definição ________________________________________________ 6 2.3 Poluentes primários e secundários ___________________________ 7 2.4 Padrões de qualidade do ar _________________________________ 8 2.4.1 Ozônio __________________________________________________ 8 2.4.2 Dióxido de nitrogênio ______________________________________ 8 2.4.3 Dióxido de enxofre ________________________________________ 9 2.4.4 Monóxido de carbono ______________________________________ 9 2.4.5 Compostos orgânicos voláteis _______________________________ 9 2.4.6 Material particulado _______________________________________ 9 2.5 Poluição atmosférica no Brasil e no estado de São Paulo _________ 12 3. SISTEMA REPRODUTOR DE CAMUNDONGOS MACHOS: FUNÇÕES DOS TESTÍCULOS__________________________________________ 15 3.1 Desenvolvimento gonadal durante o período pré-natal e após o nascimento ______________________________________________ 17 3.2 Espermatogênese _________________________________________ 20 3.2.1 Fases da espermatogênese _________________________________ 20 3.2.1.1 Mitose __________________________________________________ 21 3.2.1.2 Meiose __________________________________________________ 21 3.2.1.3 Espermiogênese ___________________________________________ 22 3.2.1.4 Espermiação _____________________________________________ 23 vii 3.2.2 Barreira hemato-testicular __________________________________ 24 3.3 Esteroidogênese __________________________________________ 26 3.4 Regulação da espermatogênese e da esteroidogênese ___________ 28 4 MATERIAL PARTICULADO INALÁVEL FINO (MP2,5) E IMPLICAÇÕES NA SAÚDE __________________________________________________ 33 4.1 Prováveis mecanismos envolvidos na toxicidade do MP2,5 ________ 36 4.2 Poluição atmosférica e reprodução ___________________________ 39 5. JUSTIFICATIVA ____________________________________________ 45 6. OBJETIVOS _______________________________________________ 48 6.1 Objetivo geral ____________________________________________ 49 6.2 Objetivos específicos ______________________________________ 49 7. MÉTODOS _______________________________________________ 50 7.1 Ética ____________________________________________________ 51 7.2 Animais _________________________________________________ 51 7.3 Protocolo de exposição ao MP2,5 _____________________________ 52 7.4 Exposição ao MP2,5 ____________________________________________________________ 53 7.5 Caracterização da composição do MP2,5 _______________________ 57 7.6 Parâmetros analisados _____________________________________ 57 7.6.1 Peso corporal_____________________________________________ 57 7.6.2 Peso do testículo __________________________________________ 58 7.6.3 Peso do epidídimo _________________________________________ 58 7.6.4 Índice gonadossomático ____________________________________ 58 7.6.5 Volume do testículo _______________________________________ 58 7.6.6 Parâmetros morfométricos _________________________________ 59 7.6.6.1 Volumes das estruturas do testículo ___________________________ 61 7.6.6.2 Área de superfície dos túbulos seminíferos ______________________ 62 7.6.6.3 Área seccional dos túbulos seminíferos _________________________ 63 7.6.6.4 Diâmetro dos túbulos seminíferos _____________________________ 63 7.6.7 Análise histológica do testículo ______________________________ 63 7.6.8 Expressão gênica __________________________________________ 65 viii 7.6.8.1 Extração do RNA __________________________________________ 65 7.6.8.2 Purificação do RNA ________________________________________ 66 7.6.8.3 Microarranjos ____________________________________________ 67 7.6.8.4 Análise dos chips __________________________________________ 74 7.7 Estatística _______________________________________________ 75 8. RESULTADOS _____________________________________________ 77 8.1 Composição do MP2,5 ______________________________________ 78 8.2 Composição dos grupos experimentais ________________________ 79 8.3 Peso corporal ____________________________________________ 80 8.4 Peso do testículo __________________________________________ 80 8.5 Peso do epidídimo ________________________________________ 80 8.6 Índice gonadossomático ____________________________________ 81 8.7 Volume do testículo _______________________________________ 81 8.8 Parâmetros morfométricos do testículo _______________________ 81 8.9 Análise histológica do testículo ______________________________ 84 8.10 Expressão gênica __________________________________________ 89 9. DISCUSSÃO ______________________________________________ 108 10. CONCLUSÕES _____________________________________________ 120 REFERÊNCIAS_____________________________________________ 122 ix LISTA DE FIGURAS Figura 1 – Categorização, pelo tamanho aerodinâmico, das partículas que compõem o material particulado 12 Figura 2 – Ilustração das estruturas de um testículo de camundongo 16 Figura 3 – Estruturas do epitélio seminífero 19 Figura 4 – Estágios do ciclo do epitélio seminífero no camundongo 23 Figura 5 – Estimativas de deposição de partículas inaladas ao longo do trato respiratório 34 Figura 6 – Protocolo de exposição dos grupos ao MP2,5 53 Figura 7 – Vista aérea da localização do CPA 54 Figura 8 – Unidade móvel que abriga o CPA 54 Figura 9 – Área interna do CPA mostrando as câmaras de exposição e o sistema de tubulações por onde o ar ambiente entra 55 Figura 10 – Área interna do CPA mostrando as câmaras de exposição ao ar filtrado e ao ar não filtrado 56 Figura 11 – Animais sendo expostos ao MP2,5 56 Figura 12 – Animal após eutanásia, durante procedimentos para coleta dos órgãos 60 Figura 13 – Tela do programa ImageJ mostrando sistema-teste 61 Figura 14 – Representação esquemática dos procedimentos realizados no experimento de microarranjo de cDNA utilizando a plataforma da Affymetrix 73 x Figura 15 – Distribuição em gráfico BoxPlot das intensidades das sondas em escala logarítmica (eixo Y) por amostra (eixo X) 74 Figura 16 – Testículos de animais do Grupo Controle 85 Figura 17 – Túbulo seminífero de um animal do grupo pré-natal e pós- desmame (GPNPD) mostrando perda de associação de células germinativas 86 Figura 18 – Túbulo seminífero de um testículo do grupo pré-natal (GPN) apresentando exfoliação de células germinativas 86 Figura 19 – Túbulo seminífero de um testículo do grupo pré-natal e pós- desmame (GPNPD) diversas alterações 87 Figura 20 – Túbulos seminíferos de testículos do grupo pré-natal (GPN) mostrando atrofia tubular 87 Figura 21 – Túbulos seminíferos de testículos do grupo pós-desmame (GPD) mostrando diversas alterações 88 Figura 22 – Gráfico volcano para a comparação entre os grupo controle (GC) e grupo pré-natal e pós-desmame (GPNPD) 90 Figura 23 – Gráfico volcano para a comparação entre os grupos controle (GC) e grupo pré-natal (GPN) 91 Figura 24 – Gráfico volcano para a comparação
Recommended publications
  • Changes in Poly(A) Tail Length Dynamics from the Loss of the Circadian Deadenylase Nocturnin
    www.nature.com/scientificreports OPEN Changes in poly(A) tail length dynamics from the loss of the circadian deadenylase Nocturnin Received: 16 February 2015 1,2 2 1 1 1 Accepted: 21 October 2015 Shihoko Kojima , Kerry L. Gendreau , Elaine L. Sher-Chen , Peng Gao & Carla B. Green Published: 20 November 2015 mRNA poly(A) tails are important for mRNA stability and translation, and enzymes that regulate the poly(A) tail length significantly impact protein profiles. There are eleven putative deadenylases in mammals, and it is thought that each targets specific transcripts, although this has not been clearly demonstrated. Nocturnin (NOC) is a unique deadenylase with robustly rhythmic expression and loss of Noc in mice (Noc KO) results in resistance to diet-induced obesity. In an attempt to identify target transcripts of NOC, we performed “poly(A)denylome” analysis, a method that measures poly(A) tail length of transcripts in a global manner, and identified 213 transcripts that have extended poly(A) tails in Noc KO liver. These transcripts share unexpected characteristics: they are short in length, have long half-lives, are actively translated, and gene ontology analyses revealed that they are enriched in functions in ribosome and oxidative phosphorylation pathways. However, most of these transcripts do not exhibit rhythmicity in poly(A) tail length or steady-state mRNA level, despite Noc’s robust rhythmicity. Therefore, even though the poly(A) tail length dynamics seen between genotypes may not result from direct NOC deadenylase activity, these data suggest that NOC exerts strong effects on physiology through direct and indirect control of target mRNAs.
    [Show full text]
  • Species-Specific Difference in Expression and Splice-Site Choice In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mamm Genome (2010) 21:458–466 DOI 10.1007/s00335-010-9281-7 Species-specific difference in expression and splice-site choice in Inpp5b, an inositol polyphosphate 5-phosphatase paralogous to the enzyme deficient in Lowe Syndrome Susan P. Bothwell • Leslie W. Farber • Adam Hoagland • Robert L. Nussbaum Received: 11 June 2010 / Accepted: 31 August 2010 / Published online: 26 September 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The oculocerebrorenal syndrome of Lowe Inpp5b/INPP5B are the most highly conserved paralogs to (OCRL; MIM #309000) is an X-linked human disorder Ocrl/OCRL in the respective genomes of both species and characterized by congenital cataracts, mental retardation, Inpp5b demonstrates functional overlap with Ocrl in mice and renal proximal tubular dysfunction caused by loss-of- in vivo. We used in silico sequence analysis, reverse-tran- function mutations in the OCRL gene that encodes Ocrl, a scription PCR, quantitative PCR, and transient transfection type II phosphatidylinositol bisphosphate (PtdIns4,5P2) assays of promoter function to define splice-site usage and 5-phosphatase. In contrast, mice with complete loss-of- the function of an internal promoter in mouse Inpp5b function of the highly homologous ortholog Ocrl have no versus human INPP5B. We found mouse Inpp5b and detectable renal, ophthalmological, or central nervous human INPP5B differ in their transcription, splicing, and system abnormalities. We inferred that the disparate phe- primary amino acid sequence. These observations form the notype between Ocrl-deficient humans and mice was likely foundation for analyzing the functional basis for the dif- due to differences in how the two species compensate for ference in how Inpp5b and INPP5B compensate for loss of loss of the Ocrl enzyme.
    [Show full text]
  • The Role of the Mtor Pathway in Developmental Reprogramming Of
    THE ROLE OF THE MTOR PATHWAY IN DEVELOPMENTAL REPROGRAMMING OF HEPATIC LIPID METABOLISM AND THE HEPATIC TRANSCRIPTOME AFTER EXPOSURE TO 2,2',4,4'- TETRABROMODIPHENYL ETHER (BDE-47) An Honors Thesis Presented By JOSEPH PAUL MCGAUNN Approved as to style and content by: ________________________________________________________** Alexander Suvorov 05/18/20 10:40 ** Chair ________________________________________________________** Laura V Danai 05/18/20 10:51 ** Committee Member ________________________________________________________** Scott C Garman 05/18/20 10:57 ** Honors Program Director ABSTRACT An emerging hypothesis links the epidemic of metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD) and diabetes with chemical exposures during development. Evidence from our lab and others suggests that developmental exposure to environmentally prevalent flame-retardant BDE47 may permanently reprogram hepatic lipid metabolism, resulting in an NAFLD-like phenotype. Additionally, we have demonstrated that BDE-47 alters the activity of both mTOR complexes (mTORC1 and 2) in hepatocytes. The mTOR pathway integrates environmental information from different signaling pathways, and regulates key cellular functions such as lipid metabolism, innate immunity, and ribosome biogenesis. Thus, we hypothesized that the developmental effects of BDE-47 on liver lipid metabolism are mTOR-dependent. To assess this, we generated mice with liver-specific deletions of mTORC1 or mTORC2 and exposed these mice and their respective controls perinatally to
    [Show full text]
  • Full-Length Cdna, Expression Pattern and Association Analysis of the Porcine FHL3 Gene
    1473 Asian-Aust. J. Anim. Sci. Vol. 20, No. 10 : 1473 - 1477 October 2007 www.ajas.info Full-length cDNA, Expression Pattern and Association Analysis of the Porcine FHL3 Gene Bo Zuo*, YuanZhu Xiong, Hua Yang and Jun Wang Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China ABSTRACT : Four-and-a-half LIM-only protein 3 (FHL3) is a member of the LIM protein superfamily and can participate in mediating protein-protein interaction by binding one another through their LIM domains. In this study, the 5'- and 3'- cDNA ends were characterized by RACE (Rapid Amplification of the cDNA Ends) methodology in combination with in silica cloning based on the partial cDNA sequence obtained. Bioinformatics analysis showed FHL3 protein contained four LIM domains and four LIM zinc-binding domains. In silica mapping assigned this gene to the gene cluster MTF1-INPP5B-SF3A3-FHL3-CGI-94 on pig chromosome 6 where several QTL affecting intramuscular fat and eye muscle area had previously been identified. Transcription of the FHL3 gene was detected in spleen, liver, kidney, small intestine, skeletal muscle, fat and stomach, with the greatest expression in skeletal muscle. The A/G polymorphism in exon II was significantly associated with birth weight, average daily gain before weaning, drip loss rate, water holding capacity and intramuscular fat in a Landrace-derived pig population. Together, the present study provided the useful information for further studies to determine the roles of FHL3 gene in the regulation of skeletal muscle cell growth and differentiation in pigs.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Effects of Proximal Tubule Shortening on Protein Excretion in a Lowe Syndrome Model
    BASIC RESEARCH www.jasn.org Effects of Proximal Tubule Shortening on Protein Excretion in a Lowe Syndrome Model Megan L. Gliozzi,1 Eugenel B. Espiritu,2 Katherine E. Shipman,1 Youssef Rbaibi,1 Kimberly R. Long,1 Nairita Roy,3 Andrew W. Duncan,3 Matthew J. Lazzara,4 Neil A. Hukriede,2,5 Catherine J. Baty,1 and Ora A. Weisz1 1Renal-Electrolyte Division, Department of Medicine, 2Department of Developmental Biology, and 3Department of Pathology, McGowan Institute for Regenerative Medicine, and Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania; 4Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia; and 5Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ABSTRACT Background Lowe syndrome (LS) is an X-linked recessive disorder caused by mutations in OCRL,which encodes the enzyme OCRL. Symptoms of LS include proximal tubule (PT) dysfunction typically character- ized by low molecular weight proteinuria, renal tubular acidosis (RTA), aminoaciduria, and hypercalciuria. How mutant OCRL causes these symptoms isn’tclear. Methods We examined the effect of deleting OCRL on endocytic traffic and cell division in newly created human PT CRISPR/Cas9 OCRL knockout cells, multiple PT cell lines treated with OCRL-targeting siRNA, and in orcl-mutant zebrafish. Results OCRL-depleted human cells proliferated more slowly and about 10% of them were multinucleated compared with fewer than 2% of matched control cells. Heterologous expression of wild-type, but not phosphatase-deficient, OCRL prevented the accumulation of multinucleated cells after acute knockdown of OCRL but could not rescue the phenotype in stably edited knockout cell lines. Mathematic modeling confirmed that reduced PT length can account for the urinary excretion profile in LS.
    [Show full text]
  • Qt4ff4w947.Pdf
    eScholarship Title Species-specific difference in expression and splice-site choice in Inpp5b, an inositol polyphosphate 5-phosphatase paralogous to the enzyme deficient in Lowe Syndrome Permalink https://escholarship.org/uc/item/4ff4w947 Journal Mammalian Genome, 21(9) ISSN 1432-1777 Authors Bothwell, Susan P. Farber, Leslie W. Hoagland, Adam et al. Publication Date 2010-10-01 DOI 10.1007/s00335-010-9281-7 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mamm Genome (2010) 21:458–466 DOI 10.1007/s00335-010-9281-7 Species-specific difference in expression and splice-site choice in Inpp5b, an inositol polyphosphate 5-phosphatase paralogous to the enzyme deficient in Lowe Syndrome Susan P. Bothwell • Leslie W. Farber • Adam Hoagland • Robert L. Nussbaum Received: 11 June 2010 / Accepted: 31 August 2010 / Published online: 26 September 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The oculocerebrorenal syndrome of Lowe Inpp5b/INPP5B are the most highly conserved paralogs to (OCRL; MIM #309000) is an X-linked human disorder Ocrl/OCRL in the respective genomes of both species and characterized by congenital cataracts, mental retardation, Inpp5b demonstrates functional overlap with Ocrl in mice and renal proximal tubular dysfunction caused by loss-of- in vivo. We used in silico sequence analysis, reverse-tran- function mutations in the OCRL gene that encodes Ocrl, a scription PCR, quantitative PCR, and transient transfection type II phosphatidylinositol bisphosphate (PtdIns4,5P2) assays of promoter function to define splice-site usage and 5-phosphatase. In contrast, mice with complete loss-of- the function of an internal promoter in mouse Inpp5b function of the highly homologous ortholog Ocrl have no versus human INPP5B.
    [Show full text]
  • Dissecting Differential Gene Expression Within the Circadian Neuronal Circuit of Drosophila
    ART ic LE S Dissecting differential gene expression within the circadian neuronal circuit of Drosophila Emi Nagoshi1,2,4, Ken Sugino2, Ela Kula1,2,4, Etsuko Okazaki3, Taro Tachibana3, Sacha Nelson2 & Michael Rosbash1,2 Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits. A central goal of neurobiology is to understand animal behavior by the functional diversity of clock neurons and how they interact to understanding neuronal circuits. Deciphering how they function and form functional circuits remain largely unknown. thereby generate behavior requires identification of neuronal subtypes From a molecular standpoint, circadian rhythms are generated within a circuit, their organization and connections, as well as the by cell-autonomous molecular clocks present within many cells and contributions of individual cells to overall circuit output. Circadian tissues.
    [Show full text]
  • The Metabolites NADP+ and NADPH Are the Targets of the Circadian Protein Nocturnin (Curled)
    ARTICLE https://doi.org/10.1038/s41467-019-10125-z OPEN The metabolites NADP+ and NADPH are the targets of the circadian protein Nocturnin (Curled) Michael A. Estrella 1,4, Jin Du 1,4, Li Chen2,3,4, Sneha Rath1, Eliza Prangley1, Alisha Chitrakar1, Tsutomu Aoki1, Paul Schedl1, Joshua Rabinowitz2,3 & Alexei Korennykh1 Nocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates 1234567890():,; metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity. To identify the substrate of NOCT, we conducted a mass spec- trometry screen and report that NOCT specifically and directly converts the dinucleotide NADP+ into NAD+ and NADPH into NADH. Further, we demonstrate that the Drosophila NOCT ortholog, Curled, has the same enzymatic activity. We obtained the 2.7 Å crystal structure of the human NOCT•NADPH complex, which revealed that NOCT recognizes the chemically unique ribose-phosphate backbone of the metabolite, placing the 2′-terminal phosphate productively for removal. We provide evidence for NOCT targeting to mito- chondria and propose that NADP(H) regulation, which takes place at least in part in mito- chondria, establishes the molecular link between circadian clock and metabolism. 1 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ 08544, USA. 2 285 Frick Laboratory, Department of Chemistry, Princeton, NJ 08544, USA. 3 Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA. 4These authors contributed equally: Michael A. Estrella, Jin Du, Li Chen. Correspondence and requests for materials should be addressed to J.R.
    [Show full text]
  • Candidate Genes, Pathways and Mechanisms for Bipolar (Manic–Depressive) and Related Disorders: an Expanded Convergent Function
    Molecular Psychiatry (2004), 1007–1029 & 2004 Nature Publishing Group All rights reserved 1359-4184/04 $30.00 www.nature.com/mp ORIGINAL RESEARCH ARTICLE Candidate genes, pathways and mechanisms for bipolar (manic–depressive) and related disorders: an expanded convergent functional genomics approach CA Ogden1,2,3, ME Rich1,2,3, NJ Schork2, MP Paulus2,3, MA Geyer2,3, JB Lohr2,3, R Kuczenski2,3 and AB Niculescu1,2,3 1Laboratory of Neurophenomics, University of California, San Diego, CA, USA; 2Department of Psychiatry, University of California, San Diego, CA, USA; 3VA San Diego Healthcare System VISN-22 MIRECC, San Diego, CA, USA Identifying genes for bipolar mood disorders through classic genetics has proven difficult. Here, we present a comprehensive convergent approach that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a stimulant—methamphetamine, and a mood stabilizer—valproate), with human data (linkage loci from human genetic studies, changes in postmortem brains from patients), as a bayesian strategy of crossvalidating findings. Topping the list of candidate genes, we have DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa) located at 17q12, PENK (preproenkephalin) located at 8q12.1, and TAC1 (tachykinin 1, substance P) located at 7q21.3. These data suggest that more primitive molecular mechanisms involved in pleasure and pain may have been recruited by evolution to play a role in higher mental functions such as mood. The analysis also revealed other high-probability candidates genes (neurogenesis, neuro- trophic, neurotransmitter, signal transduction, circadian, synaptic, and myelin related), pathways and mechanisms of likely importance in pathophysiology.
    [Show full text]
  • European Journal of Immunology
    European Journal of Immunology Supporting Information for Eur. J. Immunol. 10.1002/eji.200535496 Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis Antje Kahnert, Peter Seiler, Maik Stein, Silke Bandermann, Karin Hahnke, Hans Mollenkopf and Stefan H. E. Kaufmann © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji.de ΣΣΣ ↑↓ 163 ↑ 143 > 0 anticorrelated ↓ 20 I III II ↑↓ 105 ↑↓ 39 ↑↓ 19 ↑ 86 ↓ 19 ↑ 38 ↓ 1 ↑ 19 ↓ 0 IFN- γγγ 4h IL-4 4h ↑↓ 144 ↑↓ 58 ↑ 124 ↓ 20 ↑ 57 ↓ 1 ΣΣΣ ↑↓ 1331 ↑ 680 > 41 anticorrelated ↓ 692 IV VI V ↑↓ 943 ↑↓ 159 ↑↓ 229 ↑ 411 ↓ 573 ↑ 72 ↓ 46 ↑ 197 ↓ 73 IFN- γγγ 48h IL-4 48h ↑↓ 1102 ↑↓ 388 ↑ 483 ↓ 619 ↑ 269 ↓ 119 IFN- γγγ 4h IL-4 4h Group Fold Change P-value Intensity1 Intensity2 Fold Change P-value Intensity1 Intensity2 Accession # Primary Sequence Name Sequence Description I ↑↑↑ 4.37371 3.18166E-32 657.5683 2877.62183 1.52007 0.22311 124.05638 189.28168 NM_008042 Fprl1 formyl peptide receptor-like 1 I ↑↑↑ 5.19517 2.30606E-23 3173.28125 16666.12305 1.24572 0.04476 1087.70605 1344.94006 NM_011315 Saa3 serum amyloid A 3 I ↑↑↑ 2.05258 3.2031E-06 1358.04822 2813.76611 1.10341 0.60242 697.22046 783.63538 NM_008518 Ltb lymphotoxin B I ↑↑↑ 2.62754 1.24797E-11 3477.42529 9092.96484 1.10201 0.29205 910.6438 1004.36945 NM_008357 Il15 interleukin 15 I ↑↑↑ 2.19028 5.38095E-09 1189.62219 2618.71338 1.83042 0.00007 367.65424 674.255 NM_007548 Prdm1 PR domain containing 1, with ZNF domain I ↑↑↑ 3.16446 4.00706E-07 520.12781 1650.31921 2.23118 0.10955 76.51717 166.07359 NM_009421
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]