Different Glycolytic Pathways for Glucose and Fructose in the Halophilic Archaeon Halococcus Saccharolyticus

Total Page:16

File Type:pdf, Size:1020Kb

Different Glycolytic Pathways for Glucose and Fructose in the Halophilic Archaeon Halococcus Saccharolyticus Arch Microbiol (2001) 175:52–61 DOI 10.1007/s002030000237 ORIGINAL PAPER Ulrike Johnsen · Martina Selig · Karina B. Xavier · Helena Santos · Peter Schönheit Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus Received: 14 August 2000 / Revised: 24 October 2000 / Accepted: 26 October 2000 / Published online: 9 December 2000 © Springer-Verlag 2000 Abstract The glucose and fructose degradation path- oses. The data indicate that, in the archaeon H. saccha- ways were analyzed in the halophilic archaeon Halococ- rolyticus, the isomeric hexoses glucose and fructose are cus saccharolyticus by 13C-NMR labeling studies in degraded via inducible, functionally separated glycolytic growing cultures, comparative enzyme measurements and pathways: glucose via a modified ED pathway, and fruc- cell suspension experiments. H. saccharolyticus grown on tose via a modified EM pathway. complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small Keywords Halococcus saccharolyticus · Archaea · amounts of lactate. The 13C-labeling patterns, analyzed by Modified Embden-Meyerhof pathway · Modified 1H- and 13C-NMR, indicated that glucose was degraded Entner-Doudoroff pathway · 13C-NMR · Ketohexokinase · via an Entner-Doudoroff (ED) type pathway (100%), Fructose-1-phosphate kinase · Glucose dehydrogenase · whereas fructose was degraded almost completely via an Gluconate dehydratase · 2-Keto-3-deoxy-gluconate Embden-Meyerhof (EM) type pathway (96%) and only to kinase a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activi- Abbreviations KDG 2-Keto-3-deoxygluconate · ties of the modified versions of the ED and EM pathways KDPG 2-Keto-3-deoxy-6-phosphogluconate · recently proposed for halophilic archaea. Glucose-grown FBP Fructose-1,6-bisphosphate · TIM Triosephosphate cells showed increased activities of the ED enzymes glu- isomerase · GAP Glyceraldehyde-3-phosphate · conate dehydratase and 2-keto-3-deoxy-gluconate kinase, PEP Phosphoenolpyruvate · PTS Phosphotransferase · whereas fructose-grown cells contained higher activities 1-PFK Fructose 1-phosphate kinase of the key enzymes of a modified EM pathway, ketohex- okinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose Introduction and fructose, diauxic growth kinetics were observed. Af- ter complete consumption of glucose, fructose was de- Various halophilic archaea, including species of the graded after a lag phase, in which fructose-1-phosphate genera Halobacterium, Haloarcula, Haloferax and Halo- kinase activity increased. Suspensions of glucose-grown coccus (for taxonomy, see Kamekura 1998), have been cells consumed initially only glucose rather than fructose, shown to grow on sugars, including glucose, fructose and those of fructose-grown cells degraded fructose rather sucrose, as carbon and energy sources (Hochstein 1988; than glucose. Upon longer incubation times, glucose- and Rawal et al. 1988; Danson 1993). The glucose degrada- fructose-grown cells also metabolized the alternate hex- tion pathway was first analyzed for Halobacterium saccharaovorum by Tomlinson et al. (1974). Based on the identification of enzyme activities in crude extracts, a modified Entner-Doudoroff (ED) pathway was postulated U. Johnsen · M. Selig · P. Schönheit (✉) for glucose conversion to pyruvate. Accordingly, glucose Institut für Allgemeine Mikrobiologie, is oxidized to gluconate via NADP+-dependent glucose Christian-Albrechts-Universität Kiel, dehydrogenase, followed by gluconate dehydratase yield- Am Botanischen Garten 1–9, 24118 Kiel, Germany e-mail: [email protected], ing 2-keto-3-deoxygluconate (KDG). KDG is then phos- Tel.: +49-431-8804328/4330, Fax: +49-431-880-2194 phorylated by KDG kinase to 2-keto-3-deoxy-6-phospho- K. B. Xavier · H. Santos gluconate (KDPG), which is cleaved by KDPG aldolase Instituto de Tecnologia Quimica e Biológica, to pyruvate and glyceraldehyde 3-phosphate. The latter Apartato 127, 2780 Oeiras, Portugal compound is oxidized to pyruvate, a process that involves 53 e.g. glucose dehydrogenase from Haloferax mediterranei (Bonete et al. 1996), and ketohexokinase and 1-phospho- fructokinase from Haloarcula vallismortis (Rangaswamy and Altekar 1994a, b), have been purified. However, con- clusive evidence for the operation of these glycolytic pathways in vivo has not been demonstrated. A recent comparative enzyme analysis of H. vallismortis and H. mediterranei grown on either glucose or fructose re- vealed the presence of enzymes of the modified ED path- way and of the modified EM pathway (Altekar and Ran- gaswamy 1992). In vivo evidence for the attribution of both glycolytic pathways to the degradation of the partic- ular hexose has not been given. One method to analyze glycolytic pathways in vivo is to use 13C-NMR to identify the products derived after fer- mentation of specifically labeled 13C-glucose in growing cultures or cell suspensions. This approach was recently successfully applied to elucidate glycolytic pathways in various hyperthermophilic archaea (see Selig et al. 1997; Schönheit and Schäfer 1995; Kengen et al. 1996). Fig.1 Proposed pathways of glucose degradation via modified In the present communication, glucose and fructose Entner-Doudoroff pathway and of fructose degradation via modi- degradation pathways in the halophilic archaeon Halo- fied Embden-Meyerhof pathway in halophilic archaea. For litera- coccus saccharolyticus (Montero et al. 1989) were ana- ture see text. 1 Glucose dehydrogenase, 2 Gluconate dehydratase, lyzed by 13C-labeling studies in growing cultures, com- 3 2-Keto-3-deoxygluconate kinase, 4 2-Keto-3-deoxy-6-phospho- parative enzyme measurements, and cell suspensions ex- gluconate aldolase, 5 Ketohexokinase, 6 1-Phosphofructokinase, 7 Fructose-1,6-bisphosphate aldolase, 8 Triosephosphate isomerase, periments. H. saccharolyticus was chosen for this com- 9 Glycerinaldehyde-3-phosphate dehydrogenase, 10 3-Phospho- parative study because initial growth experiments indi- glycerate kinase, 11 Phosphoglycerate mutase, 12 Enolase, cated that this organism grew equally well on glucose and 13 Pyruvate kinase fructose and formed about the same amount of acetate from both hexoses, a prerequisite for the planned 13C-la- beling experiments. The data obtained indicate that the two isomeric hexoses are catabolized in vivo via function- conventional steps, including glyceraldehyde-3-phosphate ally separated, inducible glycolytic pathways, glucose via dehydrogenase, phosphoglycerate kinase, phosphoglycer- an ED pathway and fructose via an EM pathway. The ate mutase, enolase, and pyruvate kinase. Evidence for the pathways showed modifications recently proposed for operation of this pathway has also been demonstrated for other halophilic archaea (Fig.1). other species of Halobacterium, Haloferax, and Halo- coccus (Hochstein 1988; Rawal et al. 1988; Severina and Pimenov 1988; Danson 1993). This modified ED path- Materials and methods way, with the exception of glucose dehydrogenase, has also been shown to be involved in the degradation of glu- Growth of the organism conate in the anaerobic eubacterium Clostridium aceticum (Andreesen and Gottschalk 1969; Bender et al. 1971). Halococcus saccharolyticus (Montero et al. 1989) was grown in a complex medium containing yeast extract, casamino acids, and the Glucose degradation in this organism, however, follows sugars glucose or fructose or a mixture of both. The medium con- the conventional Embden-Meyerhof (EM) pathway. tained (per liter): 25 mM fructose or 25 mM glucose, 2.5 g yeast The pathway of fructose degradation has been ana- extract, 5 g casamino acids, 250 g NaCl, 19.5 g MES, 2 g KCl, 1 g lyzed for Haloarcula vallismortis. From enzyme measure- Na-glutamate, 3 g Na-citrate, 20 g MgSO4·7H20, 200 ml trace ele- ments, it has been concluded that fructose is degraded to ment solution and 10 ml vitamin solution. The pH was adjusted to 7.35 with 5 N NaOH. The trace element solution contained (per pyruvate via a modified EM pathway (Altekar and Ran- liter): 1.5 g EDTA, 0.01 g Na2MoO4·2H2O, 0.5 g MnSO4·H2O, gaswamy 1990, 1992). Accordingly, fructose is phospho- 0.1 g FeSO4·7H2O, 0.1 g CoCl, 0.1 g ZnSO4·7H20, 0.01 g CuSO4· rylated by ketohexokinase to fructose 1-phosphate, which 5H2O. The vitamin solution contained (per liter): 2 mg biotin, in turn is phosphorylated to fructose 1,6-bisphosphate 2 mg folic acid, 11 mg pyridoxine-HCl, 5 mg riboflavin, 5 mg thi- by the activity of fructose-1-phosphate kinase. Fructose amine-HCl, 5 mg nicotinamide, 5 mg calcium panthothenate, 0.1 mg B12, 5 mg p-aminobenzoic acid. In some growth experi- 1,6-bisphosphate is then converted to 2 mol of pyruvate ments, the concentration of casamino acids, yeast extract, glu- via the conventional enzymes of the EM pathway. cose,or fructose was changed as indicated in the text and figure The proposed pathways for glucose or fructose degra- legends. Routinely, cells were grown aerobically at 37°C in Erlen- meyer flasks (0.5–2 l) containing 10% medium under continuous dation (Fig.1) were mainly concluded from enzyme shaking at 200 rpm. Growth was followed by measuring optical analyses, in particular from the identification of key en- ∆ ∆ densities at 578 nm against the medium blank ( OD). An OD578 zymes of these modified pathways. Some key enzymes, of 1 corresponded to a protein content of about 0.6 mg protein/ml. 54 Preparation of cell
Recommended publications
  • Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria
    Functional characterization of carbohydrate-active enzymes from marine bacteria I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Marcus Bäumgen Greifswald, 28.02.2020 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Harry Brumer Tag der Promotion: 24.06.2020 II III Wissenschaft ist das Werkzeug, welches es uns ermöglicht, das große Puzzel der Natur und des Lebens zu lösen. IV Auch wenn wir den Weg des Wissens und der Weisheit niemals bis zum Ende beschreiten können, so ist doch jeder Schritt, den wir tun, ein Schritt in eine bessere Welt. V Content Abbreviations ..................................................................................................................... IX 1. Introduction ..................................................................................................................... 1 1.1 The marine carbon cycle .............................................................................................. 1 1.1.1 Algal blooms .......................................................................................................... 1 1.1.2 The marine carbohydrates ulvan and xylan ........................................................... 2 1.1.3 Marine polysaccharide utilization ........................................................................... 4 1.2 Carbohydrate-active enzymes
    [Show full text]
  • Integrated Molecular Analysis of Sugar Metabolism of Sulfolobus Solfataricus
    Integrated molecular analysis of Sugar Metabolism of Sulfolobus solfataricus Stan J.J. Brouns Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Promotoren prof. dr. Willem M. de Vos hoogleraar in de Microbiologie Wageningen Universiteit prof. dr. John van der Oost persoonlijk hoogleraar Microbiologie en Biochemie Wageningen Universiteit Leden van de prof. dr. Ton J.W.G. Visser promotie bijzonder hoogleraar Microspectroscopie in de Biochemie commissie Wageningen Universiteit prof. dr. Arnold J.M. Driessen hoogleraar Moleculaire Microbiologie Rijksuniversiteit Groningen dr. Loren L. Looger Howard Hughes Medical Institute Ashburn (VA), Verenigde Staten dr. Thijs Kaper Genencor International Palo Alto (CA), Verenigde Staten Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 2 oktober 2007 des namiddags te half twee in de Aula Cover Boiling water: the habitat of a hyperthermophile (photo: S.J.J. Brouns) Printing Gildeprint (Enschede) Sponsoring Hellma Benelux, bioMérieux Brouns, S.J.J. - Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus in Dutch Geïntegreerde moleculaire analyse van het suikermetabolisme van Sulfolobus solfataricus PhD Thesis Wageningen University, Wageningen, Netherlands (2007) 176 p. - with summary in Dutch ISBN 978-90-8504-713-1 Voor mijn ouders en Marloes DANkwooRD Met trots ligt ligt hier nu een boekje. Natuurlijk kon het niet totstandkomen zonder de hulp van anderen. In dit stukje wil ik die mensen bedanken.
    [Show full text]
  • Gluconate Dehydratase
    Europäisches Patentamt *EP001496113A1* (19) European Patent Office Office européen des brevets (11) EP 1 496 113 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 9/88, C12N 15/55, 12.01.2005 Bulletin 2005/02 C12N 15/63, C12P 7/58 (21) Application number: 04254114.4 (22) Date of filing: 08.07.2004 (84) Designated Contracting States: • Ishibashi, Hiroki, c/o Mitsui Chemicals Inc. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Omuta-shi, Fukuoka 836-8610 (JP) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Fukuiri, Yasushi, c/o Mitsui Chemicals Inc. Designated Extension States: Omuta-shi, Fukuoka 836-8610 (JP) AL HR LT LV MK • Sakuma, Atsushi, c/o Mitsui Chemicals Inc. Omuta-shi, Fukuoka 836-8610 (JP) (30) Priority: 10.07.2003 JP 2003194680 • Komatsu, Hironori, c/o Mitsui Chemicals Inc. Sodegaura-shi, Chiba 299-0265 (JP) (71) Applicant: MITSUI CHEMICALS, INC. • Ando, Tomoyuki, c/o Mitsui Chemicals Inc. Tokyo (JP) Sodegaura-shi, Chiba 299-0265 (JP) • Togashi, Kazuhiko, c/o Mitsui Chemicals Inc. (72) Inventors: Sodegaura-shi, Chiba 299-0265 (JP) • Miyake, Hitoki, c/o Mitsui Chemicals Inc. • Umetani, Hideki, c/o Mitsui Chemicals Inc. Mobara-shi, Chiba, 297-0017 (JP) Sodegaura-shi, Chiba 299-0265 (JP) • Yamaki, Toshifumi, c/o Mitsui Chemicals Inc. Mobara-shi, Chiba, 297-0017 (JP) (74) Representative: Paget, Hugh Charles Edward et al • Oikawa, Toshihiro, c/o Mitsui Chemicals Inc. Mewburn Ellis LLP Mobara-shi, Chiba, 297-0017 (JP) York House • Nakamura, Takeshi, New Energy and Industrial 23 Kingsway Kawasaki-shi, Kanagawa 212-8554 (JP) London WC2B 6HP (GB) (54) Gluconate dehydratase (57) A novel gluconate dehydratase derived from gluconate dehydratase or a transformed cell containing Achromobacter xylosoxidans and a gene encoding the the gene with an aldonic acid, the corresponding 2-keto- gluconate dehydratase are provided.
    [Show full text]
  • Resolution of Carbon Metabolism and Sulfur-Oxidation Pathways of Metallosphaera Cuprina Ar-4 Via Comparative Proteomics
    JOURNAL OF PROTEOMICS 109 (2014) 276– 289 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jprot Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics Cheng-Ying Jianga, Li-Jun Liua, Xu Guoa, Xiao-Yan Youa, Shuang-Jiang Liua,c,⁎, Ansgar Poetschb,⁎⁎ aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China bPlant Biochemistry, Ruhr University Bochum, Bochum, Germany cEnvrionmental Microbiology and Biotechnology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China ARTICLE INFO ABSTRACT Article history: Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically Received 16 March 2014 on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species Accepted 6 July 2014 desirable for application in biomining. In order to obtain a global overview of physiological Available online 14 July 2014 adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract Keywords: were compared. 169 proteins were found to change their abundance depending on growth Quantitative proteomics condition. The proteins with increased abundance under autotrophic growth displayed Bioleaching candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified Autotrophy 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy Heterotrophy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner– Industrial microbiology Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also Extremophile some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions.
    [Show full text]
  • Extracting Chemical Reactions from Biological Literature
    Extracting Chemical Reactions from Biological Literature Jeffrey Tsui Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-109 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-109.html May 16, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Extracting Chemical Reactions from Biological Literature Jeffrey Tsui Master of Science in Computer Science University of California, Berkeley Advisor: Ras Bodik Abstract Table of Contents Synthetic biologists must comb through vast amounts of 1. Introduction academic literature to design biological systems. The 2. Related Works majority of this data is unstructured and difficult to query 3. Extracting Reactions using Patterns because they are manually annotated. Existing databases 3.1 Pattern Representation such as PubMed already contain over 20 million citations 3.2 Extraction Process and are growing at a rate of 500,000 new citations every 3.2 Sentence Parsing year. Our solution is to automatically extract chemical 4. Creating a Training Set reactions from biological text and canonicalize them so that they can be easily indexed and queried. This paper 4.1 Reaction Labeling describes a natural language processing system that 4.2 Assumptions and Limitations generates patterns from labeled training data and uses them 5.
    [Show full text]
  • The Iron-Sulfur Clusters of Dehydratases Are Primary Intracellular Targets of Copper Toxicity
    The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity Lee Macomber and James A. Imlay1 Department of Microbiology, University of Illinois, Urbana, IL 61801 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved March 31, 2009 (received for review December 16, 2008) Excess copper is poisonous to all forms of life, and copper over- suppressed, but no DNA damage was detected (17). Further loading is responsible for several human pathologic processes. The inspection suggested that intracellular metabolites, including primary mechanisms of toxicity are unknown. In this study, mu- glutathione, might chelate copper so that it fails to associate with tants of Escherichia coli that lack copper homeostatic systems DNA and/or undergo cycles of oxidation and reduction (17). (copA cueO cus) were used to identify intracellular targets and to How, then, does copper ‘‘toxify’’ cells? The present study used test the hypothesis that toxicity involves the action of reactive copA cueO cus mutants to identify primary routes of intracellular oxygen species. Low micromolar levels of copper were sufficient to damage. It also exploited the ability of E. coli to grow anaero- inhibit the growth of both WT and mutant strains. The addition of bically, so that the role of oxygen in copper toxicity could be branched-chain amino acids restored growth, indicating that cop- directly evaluated. per blocks their biosynthesis. Indeed, copper treatment rapidly inactivated isopropylmalate dehydratase, an iron-sulfur cluster Results enzyme in this pathway. Other enzymes in this iron-sulfur dehy- Copper Is Highly Toxic Under Environmentally Relevant Conditions. dratase family were similarly affected.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • From Enzyme Cascades Towards Physiology and Application
    Sugar metabolism: from enzyme cascades towards physiology and application Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - vorgelegt von Lu Shen Molekulare Enzymtechnologie und Biochemie Biofilm Centre Fachbereich Chemie der Universität Duisburg-Essen 2019 Die vorliegende Arbeit wurde im Zeitraum von Dezember 2013 bis April 2019 bei Prof. Dr. Bettina Siebers im Arbeitskreis für Molekulare Enzymtechnologie und Biochemie (Biofim Centre) der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 05.11.2019 Gutachter: Prof. Dr. Bettina Siebers Prof. Dr. Peter Bayer Vorsitzender: Prof. Dr. Thomas Schrader Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/70847 URN: urn:nbn:de:hbz:464-20201027-101056-7 Dieses Werk kann unter einer Creative Commons Namensnennung 4.0 Lizenz (CC BY 4.0) genutzt werden. Content 1 Introduction ...................................................................................................................... 1 1.1 Archaea ......................................................................................................................... 1 1.2 Sulfolobus spp. .............................................................................................................. 3 1.3 Hexose metabolism in Sulfolobus spp. .......................................................................... 4 1.3.1 The bifunctional
    [Show full text]
  • The Crystal Structure of D-Xylonate Dehydratase Reveals Functional Features of Enzymes from the Ilv/ED Dehydratase Family
    www.nature.com/scientificreports OPEN The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED Received: 18 October 2017 Accepted: 22 December 2017 dehydratase family Published: xx xx xxxx Mohammad Mubinur Rahman1, Martina Andberg2, Anu Koivula2, Juha Rouvinen1 & Nina Hakulinen 1 The Ilv/ED dehydratase protein family includes dihydroxy acid-, gluconate-, 6-phosphogluconate- and pentonate dehydratases. The members of this family are involved in various biosynthetic and carbohydrate metabolic pathways. Here, we describe the frst crystal structure of D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) at 2.7 Å resolution and compare it with other available enzyme structures from the IlvD/EDD protein family. The quaternary structure of CcXyDHT is a tetramer, and each monomer is composed of two domains in which the N-terminal domain forms a binding site for a [2Fe-2S] cluster and a Mg2+ ion. The active site is located at the monomer-monomer interface and contains residues from both the N-terminal recognition helix and the C-terminus of the dimeric counterpart. The active site also contains a conserved Ser490, which probably acts as a base in catalysis. Importantly, the cysteines that participate in the binding and formation of the [2Fe-2S] cluster are not all conserved within the Ilv/ED dehydratase family, which suggests that some members of the IlvD/EDD family may bind diferent types of [Fe-S] clusters. Tere is increasing interest in developing economical and sustainable bioprocesses to convert biomass into valua- ble organic compounds. Metabolic engineering and synthetic biology have enabled the development of optimized microbial strains for the production of target compounds by taking advantage of known pathways and enzymes.
    [Show full text]
  • Genome-Directed Analysis of Prophage Excision, Host Defence
    www.nature.com/scientificreports OPEN Genome-directed analysis of prophage excision, host defence systems, and central fermentative Received: 02 December 2015 Accepted: 29 April 2016 metabolism in Clostridium Published: 19 September 2016 pasteurianum Michael E. Pyne1,†, Xuejia Liu1, Murray Moo-Young1, Duane A. Chung1,2,3 & C. Perry Chou1 Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism’s genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism’s defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated ϕ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism’s restriction-modification systems. We also unveiled the chiefC. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism’s central metabolism within the context of metabolic engineering is provided. Clostridium pasteurianum is an obligately anaerobic, endospore-forming soil bacterium that is emerging as an attractive industrial host owing to its unique fermentative metabolism1–3 and newfound capacity to directly con- sume electric current4.
    [Show full text]