BAP 374 Covers.Indd

Total Page:16

File Type:pdf, Size:1020Kb

BAP 374 Covers.Indd Late Devonian Goniatites (Cephalopoda, Ammonoidea) from New York State M. R. House and W. T. Kirchgasser Bulletins of American Paleontology Number 374, July 2008 BULLETINS OF AMERICAN PALEONTOLOGY Established 1895 Paula M. Mikkelsen Warren D. Allmon Editor-in-Chief Director Editorial Board Jason S. Anderson, University of Calgary Carlton Brett, University of Cincinnati Ann F. Budd, University of Iowa Peter Dodson, University of Pennsylvania J. Thomas Dutro Jr., United States Geological Survey Daniel Fisher, University of Michigan Dana H. Geary, University of Wisconsin-Madison John Pojeta, United States Geological Survey Carrie E. Schweitzer, Kent State University Geerat J. Vermeij, University of California at Davis Emily H. Vokes, Tulane University (Emerita) William Zinsmeister, Purdue University Bulletins of American Paleontology is published semiannually by Paleontological Re- search Institution. For a list of titles and to order back issues online, go to http://museum- oftheearth.org. Numbers 1-94 (1895-1941) of Bulletins of American Paleontology are available from Periodicals Service Company, Germantown, New York, http://www.pe- riodicals.com. Subscriptions to Bulletins of American Paleontology are available to US addresses for US$165 per year, postage included, to individuals or institutions; non-US addressees pay an additional US$20 for postage and handling. For additional information or to place an order, contact: Publications Offi ce Paleontological Research Institution 1259 Trumansburg Road Ithaca, New York 14850-1313 Tel. (607) 273-6623, ext. 20 Fax (607) 273-6620 [email protected] Th is paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Late Devonian Goniatites (Cephalopoda, Ammonoidea) from New York State M. R. House and W. T. Kirchgasser Bulletins of American Paleontology Number 374, July 2008 ISSN 007-5779 ISBN 978-0-87710-476-6 Library of Congress Catalog Card Number 2008931960 © 2008, Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850, U. S. A. Michael House (at far right) on a “Friends of Devonian” fi eld trip, western New York, 1966, with (left to right) John Huddle (U. S. Geological Survey), Ed Buehler (SUNY Buff alo), Larry Rickard (N. Y. State Geological Survey), Bill Kirchgasser (SUNY Potsdam), and Jon Harrington (Cornell University). Photograph by Prof. J. W. Wells (Cornell University). Michael House (second from left) with Tony Dunn (SUNY Potsdam) and Prof. and Mrs. J. Wells, at Luck Stone Lodge, Sheldrake Point, Cayuga Lake, 1984. Michael House (seated at right) with Gil Klapper (at left, University of Iowa) and Th omas Becker (standing, Southampton University and Universität Münster), in Western Australia, 1990. TRIBUTE MICHAEL ROBERT HOUSE (1930-2002) Michael House was raised on the Mesozoic ammonites along the coast of his native Dorset. While studying at Cambridge, he found Devonian goniatites on the rocky shores of Cornwall and Devon and began a lifelong pursuit of their relatives around the globe, collecting bed by bed and tracking down type specimens in museums large and small, making friends everywhere. He came to America to fi nd Professor John Wells at Cornell University in Ithaca, New York, and was guided to the Naples area where the seed that grew into this monograph was planted. House was a tireless ambassador for the Devonian with an ever-expanding goniatite portfolio, a true internationalist, a Friend of the Devonian and all its students, profes- sional and amateur. He was a dedicated teacher and mentor to generations of students at the universities at Durham, Oxford, Hull and Southampton. Among the many awards and tributes is a volume of papers in his honor (Becker & Kirchgasser, 2007) that includes a list of his one-hundred-plus publications. R. T., & W. T. Kirchgasser, eds. 2007. Devonian Events and Correlations. Geological Society (London) Special Publication 278, 280 pp. HOUSE & KIRCHGASSER: LATE DEVONIAN GONIATITES 1 LATE DEVONIAN GONIATITES (Cephalopoda, Ammonoidea) FROM NEW YORK STATE M. R. House* & W. T. Kirchgasser Department of Geology, State University of New York at Potsdam, Potsdam, New York 13676, U. S. A., email [email protected] [*deceased] ABSTRACT This paper is a revision of the classic nineteenth century goniatite collections from the Devonian of New York State de- scribed by James Hall and John M. Clarke. Type material is illustrated photographically, mostly for the first time; the taxonomy is revised, and ontogenetic and statistical data are given, where possible. Detailed biostratigraphic work is re- ported through the late Givetian, Frasnian, and Famennian, aimed at determining the precise horizon and location of primary material at 184 localities. A description of the considerable additional goniatite material is integrated with that of the classic type specimens to treat the faunas systematically and as a whole. Noteworthy is the different contribution to knowledge provided by a range of preservation patterns, especially of the material preserved as barite replacements from the Cashaqua Shale. The goniatite-bearing horizons are mostly associated with transgressive pulses that punctuate the Catskill Delta succession. The major ones are the upper Tully Limestone, the Geneseo and Renwick black shales, the Ge- nundewa Limestone, and the Middlesex, Rhinestreet, Pipe Creek, and Dunkirk black shales. The refined goniatite succession reported is perhaps the most detailed known in the world through the interval stud- ied. The New York faunal levels are correlated with those known elsewhere, especially with Old World successions, and with the new international standard established by Becker & House (2000). Minor regional variations give a more detailed Appalachian regional zonation of 25 zones, which is integrated with the international standard. The succession associated with the major late Givetian faunal turnover (Taghanic Event) is described, and the influence of sea level changes and anoxia on faunal entry and diversification is reviewed. Very little endemicity is recognized in the faunas, apart from the multilobed Triainoceratidae that are well developed in the mid-Frasnian of central New York. The late Frasnian succession associated with the Lower and Upper Kellwasser Events is documented. Parallel conodont work provides cor- relation with the conodont zonation scale. New taxa described are Koenenites styliophylus kilfoylei n. ssp., Koenenites beckeri n. sp., Sandbergeroceras? enfieldense n. sp., and Manticoceras sinuosum clausium n. ssp.; the older names sinuosum Hall, 1843, and tardum Clarke, 1898, are regarded as subspecies of Manticoceras sinuosum (Hall, 1843). Lectotypes are desig- nated for Pharciceras tridens (G. & F. Sandberger, 1850), Sandbergeroceras syngonum Clarke, 1897, Acanthoclymenia ge- nundewa (Clarke, 1898), Chutoceras nundaium (Hall, 1874), Koenenites styliophilus styliophilus (Clarke, 1898), K. ?fasciculatus (Clarke, 1898), Manticoceras contractum Clarke, 1898, M. sinuosum apprimatum Clarke, 1898, M. sinuosum tardum Clarke, 1898, M. accelerans Clarke, 1897, Carinoceras sororium (Clarke, 1898), Delphiceras cataphractum (Clarke, 1898), Sphaeromanticoceras rhynchostomum (Clarke, 1898), S. oxy (Clarke, 1897), Tornoceras uniangulare uniangulare (Conrad, 1842), and Truyolsoceras bicostatum (Hall, 1843). The Geneseo Limestone Horizon is proposed as a new in- formally named horizon of the Genesee Group. INTRODUCTION turbed, and over a wide outcrop tract more than 280 mi Nowhere in the world is the Upper Devonian exposed so (450 km) long, the dip of the rocks rarely exceeds 1.5o to continuously and accessibly as in New York State. The lower the south. With so extensive an outcrop, and so simple a Upper Devonian (upper Givetian-Frasnian) in particular is structure, the facies changes from the thin marine sequence seen in quite unparalleled excellence, and this interval has near Lake Erie on the west to the thick non-marine se- the greatest potential for refining the biostratigraphic record quences in the Catskill Mountains to the east can be corre- of goniatite cephalopods. The Upper Devonian in New York lated and analyzed in great detail (Text-fig. 1). State crops out over an area of approximately 15,000 mi2 These goniatite faunas have been known since the work (39,000 km2). The sequences are well exposed in innumer- of James Hall (1843) and Lardner Vanuxem (1839, 1842), able creek, gully, and riverside sections. The beds are undis- but it was their description by John M. Clarke (1898, 1899a, b) that made them particularly well known. Clarke 2 BULLETINS OF AMERICAN PALEONTOLOGY no. 374 Text-fig. 1. Map of upstate New York showing the outcrop area of late Devonian rocks (Tully Limestone and younger) (stippled), the 15' quadrangle map areas, and (inset) the location of the diagram. The Finger Lakes are marked in black. In addition to the state quadrangle maps, current editions of the New York State Atlas and Gazeteer (Anonymous, 1993) are a convenient source of maps for site location. discovered very well-preserved material, including rich bar- The framework was built on the lithological correlations es- itized faunas that enabled extraction by etching, and he de- tablished by G. W. Colton, J. F. Pepper, W. de Witt, Jr., and veloped techniques for producing artificial molds of material R. G. Sutton in a series of contributions. So excellent are from siltstones. His descriptions of the early stages of many the exposures, however, that individual goniatite horizons forms, particularly
Recommended publications
  • The Unique Devonian of Immouzer-Du-Kandar (Middle Atlas Basement) – Biostratigraphy, Faunas, and Facies Development
    Aboussalam & al. Devonian of Immouzer-du-Kandar The unique Devonian of Immouzer-du-Kandar (Middle Atlas basement) – biostratigraphy, faunas, and facies development ZHOR SARAH ABOUSSALAM, RALPH THOMAS BECKER, JULIA RICHTER, SVEN HARTENFELS, AHMED EL HASSANI & STEPHAN EICHHOLT Fig. 1: View (from the hill at Douar Ahmed-ben-Mellouk) on Devonian exposures of Immouzer-du-Kandar (hill rising from Chabat el Jenanet, Sections C2 and C3 of CYGAN et al. 1990), our Section C4, with outcrop of the lower Emsian conglomerate (Chabat Jenanet Formation) along and above the track, faulted upper Emsian to lower Givetian limestones in the lower slope (new Ahmed-ben-Mellouk Formation), the reef breccia forming a small terrace ca. 2/3 upwards, and the Famennian upper slope (new Chabat el Hallouf Formation, Section C5) towards the top. The slope to the left (NNE) is occupied by Triassic red beds. Section numbers are marked in circles. 1. Introduction Mesozoic Middle Atlas, with the best and most important outcrops in the tectonic window The Middle Atlas divides the Moroccan (“boutonnière”) at Immouzer-du-Kandar, ca. Meseta into the Western and Eastern Meseta, 40 km S of Fès. The wooded Jebel Kandar to which differ strongly in the Devonian in terms the SW is a more than 1600 m high mountain of facies and synsedimentary structural built of Jurassic strata (Fig. 2). Fossiliferous geology (e.g., overviews of EL HASSANI & Ordovician to Lower Carboniferous BENFRIKA 1995, 2000). There is restricted formations crop out to the NW, from Dour knowledge of the Palaeozoic basement of the Rouda towards the SE, the Chabat el Jenanet, Hassan II Academy of Science and Technology Frontiers in Science and Engineering - Vol.
    [Show full text]
  • Download This PDF File
    Acta Geologica Polonica, Vol. 50 (2000), No. 1, pp. 67-97 Revision of ammonoid biostratigraphy in the Frasnian (Upper Devonian) of the Southern Timan (Northeast Russian Platform) R. THOMAS BECKER1, MICHAEL R. HOUSE2, VLADIMIR V. MENNER3 & N. S. OVNATANOVA4 1 Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstr. 43, D-10115 Berlin, Germany. E-mail: [email protected] 2 School of Ocean and Earth Science, Southampton Oceanography Centre, European Way, Southampton, SO 14 3ZH, U.K. 3 Institute of Geology and Exploitation of Combustible Fuel, Fersman 50, Moscow 117312, Russian Federation 4 All-Russia Research Geological Oil Prospecting Institute, Shosse Entuziastov 36, Moscow 105819, Russian Federation ABSTRACT: BECKER, R.T., HOUSE, M.R., MENNER, V.V. & OVNATANOVA, N.S. (2000). Revision of ammonoid biostratig- raphy in the Frasnian (Upper Devonian) of the Southern Timan (Northeast Russian Platform). Acta Geologica Polonica, 50 (1), 67-97, Warszawa. New field work in outcrops of the Ukhta Region (Southern Timan) together with the re-exanimation of former collections allows a detailed revision of the ammonoid zonation in one of the classical Frasnian regions of Russia. There is a total of 47 species, 18 of which are new or recorded for the first time from the region. The latter applies to representatives of Linguatornoceras, Phoenixites, Aulatornoceras s.str. and Acantho- clymenia. New taxa are Chutoceras manticoides n.gen. n.sp. and Linguatornoceras yudinae n.sp. In the Ust’yarega Formation regional Hoeninghausia nalivkini, Timanites keyserlingi and Komioceras stuckenber- gi Zones can be recognized which correlate with the international Frasnian divisions UD I-B/C.
    [Show full text]
  • Message from the New Chairman
    Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques.
    [Show full text]
  • Suture with Pointed Flank Lobe and ... -.: Palaeontologia Polonica
    210 JERZY DZIK Genus Posttornoceras Wedekind, 1910 Type species: Posttornoceras balvei Wedekind, 1910 from the mid Famennian Platyclymenia annulata Zone of the Rhenisch Slate Mountains. Diagnosis. — Suture with pointed flank lobe and angular or pointed dorsolateral lobe. Remarks. — Becker (1993b) proposed Exotornoceras for the most primitive members of the lineage with a relatively shallow dorsolateral lobe. The difference seems too minor and continuity too apparent to make this taxonomical subdivision practical. Becker (2002) suggested that this lineage was rooted in Gundolficeras, which is supported by the data from the Holy Cross Mountains. The suture of Posttornoceras is similar to that of Sporadoceras, but these end−members of unrelated lin− eages differ rather significantly in the geometry of the septum (Becker 1993b; Korn 1999). In Posttornoceras the parts of the whorl in contact with the preceding whorl are much less extensive, the dorsolateral saddle is much shorter and of a somewhat angular appearance. This is obviously a reflection of the difference in the whorl expansion rate between the tornoceratids and cheiloceratids. Posttornoceras superstes (Wedekind, 1908) (Figs 154A and 159) Type horizon and locality: Early Famennian at Nehden−Schurbusch, Rhenish Slate Mountains (Becker 1993b). Diagnosis. — Suture with pointed tip of the flank lobe and roundedly angulate dorsolateral lobe. Remarks.—Gephyroceras niedzwiedzkii of Dybczyński (1913) from Sieklucki’s brickpit was repre− sented by a specimen (probably lost) significantly larger than those described by Becker (1993b). The differ− ence in proportions of suture seem to result from this ontogenetic difference, that is mostly from increase of the whorl compression with growth. Distribution. — Reworked at Sieklucki’s brickpit in Kielce.
    [Show full text]
  • Geology of the Devonian Marcellus Shale—Valley and Ridge Province
    Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 By Catherine B. Enomoto1, James L. Coleman, Jr.1, John T. Haynes2, Steven J. Whitmeyer2, Ronald R. McDowell3, J. Eric Lewis3, Tyler P. Spear3, and Christopher S. Swezey1 1U.S. Geological Survey, Reston, VA 20192 2 James Madison University, Harrisonburg, VA 22807 3 West Virginia Geological and Economic Survey, Morgantown, WV 26508 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Ken Salazar, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin
    DOE/NETL-2011/1478 A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin U.S. DEPARTMENT OF ENERGY DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms, suggestions, and support significantly improved the content, and we are deeply grateful. Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch.
    [Show full text]
  • An Examination of the Devonian Bedrock and Overlying Pleistocene Sediments at Messerly & Morgan Quarries, Blackhawk County, Iowa
    FromFFrroomm OceanOOcceeaann tottoo Ice:IIccee:: AnAAnn examinationeexxaammiinnaattiioonn ofooff thetthhee DevonianDDeevvoonniiaann bedrockbbeeddrroocckk andaanndd overlyingoovveerrllyyiinngg PleistocenePPlleeiissttoocceennee sedimentssseeddiimmeennttss ataatt MesserlyMMeesssseerrllyy &&& MorganMMoorrggaann Quarries,QQuuaarrrriieess,, BlackBBllaacckk HawkHHaawwkk County,CCoouunnttyy,, IowaIIoowwaa Geological Society of Iowa ______________________________________ April 24, 2004 Guidebook 75 Cover photograph : University of Northern Iowa Professor and field trip leader Dr. Jim Walters points to a stromatoporoid-rich bed in the Osage Springs Member of the Lithograph City Formation at the Messerly Quarry, the first stop of this field trip From Ocean to Ice: An examination of the Devonian bedrock and overlying Pleistocene sediments at Messerly & Morgan Quarries, Blackhawk County, Iowa prepared and led by: James C. Walters Department of Earth Science University of Northern Iowa Cedar Falls, IA 50614 John R. Groves Department of Earth Science University of Northern Iowa Cedar Falls, IA 50614 Sherman Lundy 4668 Summer St. Burlington IA 52601 with contributions by: Bill J. Bunker Iowa Geological Survey Iowa Department Natural Resources Iowa City, Iowa 52242-1319 Brian J. Witzke Iowa Geological Survey Iowa Department Natural Resources Iowa City, Iowa 52242-1319 April 24, 2004 Geological Society of Iowa Guidebook 75 i ii Geological Society of Iowa TABLE OF CONTENTS From Ocean to Ice: An examination of the Devonian bedrock and overlying Pleistocene
    [Show full text]
  • ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0016–7800 ISBN 3-85316-14-X Band 57 S. 167–180 Wien, Februar 2002 Cephalopods – Present and Past Editors: H. Summesberger, K. Histon & A. Daurer Morphometric Analyses and Taxonomy of Oxyconic Goniatites (Paratornoceratinae n. subfam.) from the Early Famennian of the Tafilalt (Anti-Atlas, Morocco) VOLKER EBBIGHAUSEN, RALPH THOMAS BECKER & JÜRGEN BOCKWINKEL*) 13 Text-Figures and 1 Table A contribution to IGCP 421 Morocco Upper Devonian Ammonoids Morphometry Taxonomy Contents Zusammenfassung ...................................................................................................... 167 Abstract ................................................................................................................. 167 1. Introduction ............................................................................................................. 169 2. Locality and Methods .................................................................................................... 169 3. Morphometric Analyses of Dar Kaoua Paratornoceratinae ................................................................. 170 3.1. Size Distribution .................................................................................................... 170 3.2. Shell Parameters ................................................................................................... 172 4. Systematics ............................................................................................................
    [Show full text]
  • Size Distribution of the Late Devonian Ammonoid Prolobites: Indication for Possible Mass Spawning Events
    Swiss J Geosci (2010) 103:475–494 DOI 10.1007/s00015-010-0036-y Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events Sonny Alexander Walton • Dieter Korn • Christian Klug Received: 17 December 2009 / Accepted: 18 October 2010 / Published online: 15 December 2010 Ó Swiss Geological Society 2010 Abstract Worldwide, the ammonoid genus Prolobites is Abbreviations only known from a few localities, and from these fossil SMF Senckenberg Museum, Frankfurt a. M., Germany beds almost all of the specimens are adults as shown by the MB.C. Cephalopod collection of the Museum fu¨r presence of a terminal growth stage. This is in marked Naturkunde Berlin (the collections of Franz contrast to the co-occurring ammonoid genera such as Ademmer, Werner Bottke, and Harald Simon Sporadoceras, Prionoceras, and Platyclymenia. Size dis- are incorporated here) tribution of specimens of Prolobites from three studied localities show that, unlike in the co-occurring ammonoid species, most of the material belongs to adult individuals. The morphometric analysis of Prolobites delphinus Introduction (SANDBERGER &SANDBERGER 1851) demonstrates the intra- specific variability including variants with elliptical coiling The mid-Fammenian (Late Devonian) ammonoid genus and that dimorphism is not detectable. The Prolobites Prolobites is only known from a few localities worldwide, material shows close resemblance to spawning populations mainly in the Rhenish Mountains and the South Urals. of Recent coleoids such as the squid Todarodes filippovae Where it does occur, the majority of the specimens show a ADAM 1975. Possible mass spawning events are discussed terminal growth stage suggesting that these are adults.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Upper Devonian Depositional and Biotic Events in Western New York
    MIDDLE- UPPER DEVONIAN DEPOSITIONAL AND BIOTIC EVENTS IN WESTERN NEW YORK Gordon C. Baird, Dept. of Geosciences, SUNY-Fredonia, Fredonia, NY 14063; D. Jeffrey Over, Dept. of Geological Sciences, SUNY-Geneseo, Geneseo, NY 14454; William T. Kirch gasser, Dept. of Geology, SUNY-Potsdam, Potsdam, NY 13676; Carlton E. Brett, Dept. of Geology, Univ. of Cincinnati, 500 Geology/Physics Bldg., Cincinnati, OH 45221 INTRODUCTION The Middle and Late Devonian succession in the Buffalo area includes numerous dark gray and black shale units recording dysoxic to near anoxic marine substrate conditions near the northern margin of the subsiding Appalachian foreland basin. Contrary to common perception, this basin was often not stagnant; evidence of current activity and episodic oxygenation events are characteristic of many units. In fact, lag deposits of detrital pyrite roofed by black shale, erosional runnels, and cross stratified deposits of tractional styliolinid grainstone present a counter intuitive image of episodic, moderate to high energy events within the basin. We will discuss current-generated features observed at field stops in the context of proposed models for their genesis, and we will also examine several key Late Devonian bioevents recorded in the Upper Devonian stratigraphic succession. In particular, two stops will showcase strata associated with key Late Devonian extinction events including the Frasnian-Famennian global crisis. Key discoveries made in the preparation of this field trip publication, not recorded in earlier literature,
    [Show full text]
  • Influence of Basement Heterogeneity on the Architecture of Low Subsidence Rate Paleozoic
    Solid Earth Discuss., https://doi.org/10.5194/se-2018-50 Manuscript under review for journal Solid Earth Discussion started: 27 June 2018 c Author(s) 2018. CC BY 4.0 License. 1 Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic 2 intracratonic basins (Ahnet and Mouydir basins, Central Sahara) 3 Paul Perron1, Michel Guiraud1, Emmanuelle Vennin1, Isabelle Moretti2, Éric Portier3, Laetitia 4 Le Pourhiet4, Moussa Konaté5 5 1Université de Bourgogne Franche-Comté, Centre des Sciences de la Terre, UMR CNRS 6 6282 Biogéosciences, 6 Bd Gabriel, 21000 Dijon, France. 7 2ENGIE, Département Exploration & Production, 1, place Samuel de Champlain, Faubourg 8 de l'Arche, 92930 Paris La Défense, France. 9 3NEPTUNE Energy International S.A., 9-11 Allée de l'Arche – Tour EGEE – 92400 10 Courbevoie, France. 11 4Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 12 7193, F-75005 Paris, France. 13 5Département de Géologie, Université Abdou Moumouni de Niamey, BP :10662, Niamey, 14 Niger. 15 Corresponding author: [email protected], [email protected] 16 Abstract 17 The Paleozoic intracratonic North African Platform is characterized by an association of 18 arches (ridges, domes, swells or paleo-highs) and low subsidence rate syncline basins of 19 different wavelengths (75–620 km). The structural framework of the platform results from the 20 accretion of Archean and Proterozoic terranes during the Pan-African orogeny (750–580 Ma). 21 The Ahnet and Mouydir basins are successively delimited from east to west by the Amguid El 22 Biod, Arak-Foum Belrem, and Azzel Matti arches, bounded by inherited Precambrian sub- 23 vertical fault systems which were repeatedly reactivated or inverted during the Paleozoic.
    [Show full text]