Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations INFORMATION TO USERS This manuscript has b een reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken o r indistinct print, colored or poor quality illustrations and photographs, print t>leedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that tMe author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to b o removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, begrinning at the upper left-hand comer and continuing from left to right in equal sanctions with small overlaps. Photographs included in the original manuscript have tieen reproduced xerographicaily in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & How«ll Information and beaming 300 North Zeeb Road, Ann Art)or, Ml 48106-1346 USA 800-521-0600 UMI’ SEDIMENTOLOGY, MINERALOGY AND GEOCHEMISTRY OF THE SIRIUS GROUP AND OTHER CENOZOIC GLACIGENIC SEDIMENTS FROM ANTARCTICA: IMPLICATIONS FOR CLIMATE AND ICE SHEET HISTORY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Sandra Passchier, M.S. ***** The Ohio State University 2000 Dissertation Committee: Approved by: Professor P.-N. Webb, Advisor Professor L. A. Krissek Professor G. Faure Professor G. D. McKenzie Advisor Department of Geological Sciences UMI Number: 9994919 ___ ® UMI UMI Microform 9994919 Copyright 2001 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Copyright by Sandra Passchier 2000 ABSTRACT Sedimentological, mineralogical and geochemical studies are applied to Cenozoic glacial sediments in Antarctica to investigate their provenance and paleoenvironment of deposition. The age and origin of terrestrial glacial deposits of the Sirius Group in the Transantarctic Mountains are widely debated. X-ray diffraction studies, and analyses of heavy minerals, chemistry, and grain-size identified two provenance end members: one consisting of deposits on high summit plateaus with a provenance of chemically weathered sedimentary rocks; another consisting of deposits in glacial troughs, the present drainage corridors of the East Antarctic Ice Sheet, with a provenance of igneous and metamorphic basement rocks. The different geomorphological settings and compositions of the Sirius Group are caused by emplacement of the Sirius Group at different stages of glacial denudation in the Transantarctic Mountains, which requires that the deposits have different ages. Climatic records from the Victoria Land basin in the Ross Sea sector of Antarctica show that a decrease in chemical weathering started at the Eocene/Oligocene boundary. Glaciotectonic features in the Cape Roberts drillcores CRP-1 and CRP-2/2A in the Victoria Land basin were studied and suggest that ice first reached the continental shelf in the Ross Sea sector in the mid- Oligocene, which indicates that the decrease in chemical weathering was associated with climatic cooling and was followed by ice-sheet growth and expansion. Deposition of part of the Sirius Group may be related to these earlier glacial phases. Because of their widely varying ages, correlation between Sirius Group outcrops to reconstruct late Neogene paleoclimatic conditions is not recommended. The Oliver Bluffs succession is Pliocene in age and forms an important terrestrial archive of a relatively recent interval of global warming. However, it should not be regarded as representative of the entire Sirius Group. Although the chemical index of alteration suggests that weathering was limited, the Pliocene Sirius Group at Oliver Bluffs shows evidence of considerable meltwater reworking, suggesting that surface melting was more important than under the present dry polar climate conditions in continental Antarctica. I ll To my parents I dedicate this dissertation. IV ACKNOWLEDGMENTS I would like to express my sincere thanks to a number of people for continuous support, guidance, feed back and encouragement during this research. First, I would like to thank my advisor Peter Webb for guidance through many aspects of the graduate education and for allowing me to explore the research topics of my choice and in a way I thought was best. Committee members Peter Webb, Larry Krissek, Gunter Faure, and Garry McKenzie are thanked for their critical review of the text, and Larry Krissek is also recognized for advice on various aspects regarding the study of the composition of sediments. Gunter Faure, David Harwood, and Gary Wilson provided additional samples of the Sirius Group and are thanked for discussion on the topic in the initial stages of the research. Jason Whitehead is thanked for providing information about, and samples from the Pagodroma Group of East Antarctica. I thank Mary Davis for carrying out the Coulter Counter measurements at the Byrd Polar Research Center, and Tumara Withers for lab assistance with the DVDP-11 pilot study. David Elliot is recognized for his interest in the Sirius Group, some valuable discussions, and for help with the identification of minerals and rock fragments. Rosemary Askin shared unpublished data on pollen and spores in the Sirius Group, which is greatly appreciated. Fellow graduate students here at OSU, including my colleagues Wojciech Majewski and Michael Sperling are thanked for support and reviewing early versions of papers and proposals. Gerhard Schmiedl provided much inspiration and contagious enthusiasm during his year here at OSU. Peter Barrett gave me the opportunity to participate in the Cape Roberts Drilling Project, and I thank him for his encouragements in the breccia studies. Terry Wilson and Tim Paulsen are also thanked for discussions and collaboration on the study of breccias in the CRP-1 core. Chris Fielding, Mike Hambrey, Larry Krissek, Ross Powell and Laura De Santis are thanked for answering questions when observing the Cape Roberts cores in McMurdo Station. Being a part of the Cape Roberts Science Team has been essential in broadening my horizons and all members are thanked for sharing an exciting scientific and international experience. The Ocean Drilling Program is thanked for providing the opportunity to participate in drilling on the East Antarctic margin. Co-chiefs Alan Cooper and Phil O'Brien, and the Leg 188 shipboard scientific party, in particular Steve Bohaty, Fabio Florindo, Carl Fredrik Forsberg, Pat Quilty, Michele Rebesco, Kari Strand, Dietz Wamke, and Jason Whitehead are acknowledged for discussions on various topics of Arctic and Antarctic science. Jaap van der Meer is thanked for his continuing support and inspiration beyond the Master's level. I am also indebted to Dick van der Wateren and Anja Verbers who introduced me to the geology of Antarctica and provided the opportunity to work on the Sirius Group when I was still in the Netherlands. Annemieke and Sandra are thanked for visiting me here and providing moral support as well as a good opportunity for some leisure time. The social gatherings with my American and international friends here in Columbus are also much appreciated. My sister Ellen is thanked for her love and hospitality during my visits to Amsterdam. Lastly, I am greatly indebted to my best friend and partner Wobbe for his artistic contributions, and for his support for, and understanding of my dedication to science during the course of the dissertation. Funding for this research was provided by the National Science Foundation Office of Polar Programs grants GPP 93-17979, GPP 94-19054 and GPP 94-20475 to Peter-N. Webb (Principal Investigator), the Lois Jones Fellowship, a Geological Society of America student research grant, and the Friends of Grton Hall. VI VITA November 6, 1968 Bom - Leiden, The Netherlands 1994 M.S. Physical Geography University of Amsterdam The Netherlands 1994-1995 Office Coordinator Institute for Geo-ecological Research, University of Amsterdam, The Netherlands 1995 Research Assistant Netherlands Institute For Applied Geoscience TNG Haarlem, The Netherlands 1996 Research Assistant Free University Amsterdam, The Netherlands Fall 1996 Teaching Assistant The Ohio State University Columbus, Ohio 1997-2000 Research Assistant The Ohio State University Columbus, Ohio Fall 1997 Technician, Cape Roberts drilling Project, Antarctica Fall 1998 Technician, Cape Roberts drilling Project, Antarctica Winter 1999 Lecturer Historical Geology The Ohio State University Columbus, Ohio Spring 2000 Sedimentologist Ocean Drilling Program Leg 188 VII PUBLICATIONS Van Tatenhove, F.G.M. and Passchier, S., 1995, Morphological and sedimentological characteristics of past and present ice dammed lakes in west Greenland. In: Abstracts of the International Union for Quaternary Research, XIV International Congress, 3-10 August 1995, Berlin, Germany, p. 284.
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • Dating Late Cenozoic Erosional Surfaces in Victoria Land, Antarctica, with Cosmogenic Neon in Pyroxenes P
    Antarctic Science 20 (1), 89–98 (2008) & Antarctic Science Ltd 2008 Printed in the UK DOI: 10.1017/S095410200700079X Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes P. OBERHOLZER1*, C. BARONI2, M.C. SALVATORE3, H. BAUR1 and R. WIELER1 1Institute of Isotope Geology and Mineral Resources, ETH Zu¨rich, Clausiusstrasse 25, 8092 Zu¨rich, Switzerland 2Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, 56126 Pisa, Italy 3Dipartimento di Scienze della Terra, Universita` di Roma “La Sapienza”, Piazzale A. Moro 5, 00185 Roma, Italy *current address: Baugeologie und Geo-Bau-Labor Chur, Bolettastrasse 1, 7000 Chur, Switzerland [email protected] Abstract: We present 21Ne exposure ages of erosional glaciogenic rock surfaces on nunataks in northern Victoria Land, Antarctica: i) in the Prince Albert Mountains and ii) near Mesa Range. These nunataks are located directly at the margin of the polar plateau and therefore provide an immediate record of ice volume changes of the East Antarctic Ice Sheet, not biased by ice shelf grounding or narrow valley sections downstream the outlet glaciers. The sampling locations overlook the present ice surface by less than 200 m, but were last covered by ice 3.5 Ma BP (minimum age, not corrected for erosion). This strongly indicates that the ice sheet has not been substantially thicker than today since at least the early Pliocene, which supports the hypothesis of a stable East Antarctic Ice Sheet. First absolute ages are reported for the alpine topography above the erosive trimline that typically marks the upper limit of glacial activity in northern Victoria Land.
    [Show full text]
  • PROGETTO ANTARTIDE Rapporto Sulla Campagna Antartica Estate Australe 1996
    PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1996 - 97 Dodicesima Spedizione PROGETTO ANTARTIDE ANT 97/02 PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1996 - 97 Dodicesima Spedizione A cura di J. Mϋller, T. Pugliatti, M.C. Ramorino, C.A. Ricci PROGETTO ANTARTIDE ENEA - Progetto Antartide Via Anguillarese,301 c.p.2400,00100 Roma A.D. Tel.: 06-30484816,Fax:06-30484893,E-mail:[email protected] I N D I C E Premessa SETTORE 1 - EVOLUZIONE GEOLOGICA DEL CONTINENTE ANTARTICO E DELL'OCEANO MERIDIONALE Area Tematica 1a Evoluzione Geologica del Continente Antartico Progetto 1a.1 Evoluzione del cratone est-antartico e del margine paleo-pacifico del Gondwana.3 Progetto 1a.2 Evoluzione mesozoica e cenozoica del Mare di Ross ed aree adiacenti..............11 Progetto 1a.3 Magmatismo Cenozoico del margine occidentale antartico..................................17 Progetto 1a.4 Cartografia geologica, geomorfologica e geofisica ...............................................18 Area Tematica 1b-c Margini della Placca Antartica e Bacini Periantartici Progetto 1b-c.1 Strutture crostali ed evoluzione cenozoica della Penisola Antartica e del margine coniugato cileno ......................................................................................25 Progetto 1b-c.2 Indagini geofisiche sul sistema deposizionale glaciale al margine pacifico della Penisola Antartica.........................................................................................42
    [Show full text]
  • Jökulhlaups in Skaftá: a Study of a Jökul- Hlaup from the Western Skaftá Cauldron in the Vatnajökull Ice Cap, Iceland
    Jökulhlaups in Skaftá: A study of a jökul- hlaup from the Western Skaftá cauldron in the Vatnajökull ice cap, Iceland Bergur Einarsson, Veðurstofu Íslands Skýrsla VÍ 2009-006 Jökulhlaups in Skaftá: A study of jökul- hlaup from the Western Skaftá cauldron in the Vatnajökull ice cap, Iceland Bergur Einarsson Skýrsla Veðurstofa Íslands +354 522 60 00 VÍ 2009-006 Bústaðavegur 9 +354 522 60 06 ISSN 1670-8261 150 Reykjavík [email protected] Abstract Fast-rising jökulhlaups from the geothermal subglacial lakes below the Skaftá caul- drons in Vatnajökull emerge in the Skaftá river approximately every year with 45 jökulhlaups recorded since 1955. The accumulated volume of flood water was used to estimate the average rate of water accumulation in the subglacial lakes during the last decade as 6 Gl (6·106 m3) per month for the lake below the western cauldron and 9 Gl per month for the eastern caul- dron. Data on water accumulation and lake water composition in the western cauldron were used to estimate the power of the underlying geothermal area as ∼550 MW. For a jökulhlaup from the Western Skaftá cauldron in September 2006, the low- ering of the ice cover overlying the subglacial lake, the discharge in Skaftá and the temperature of the flood water close to the glacier margin were measured. The dis- charge from the subglacial lake during the jökulhlaup was calculated using a hypso- metric curve for the subglacial lake, estimated from the form of the surface cauldron after jökulhlaups. The maximum outflow from the lake during the jökulhlaup is esti- mated as 123 m3 s−1 while the maximum discharge of jökulhlaup water at the glacier terminus is estimated as 97 m3 s−1.
    [Show full text]
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • Provenance, Geochentistry and Grain-Sizes of Glacigene Sedirnents
    Annals ifGlaciology 27 1998 © International Glaciological Society Provenance, geochentistry and grain-sizes of glacigene sedirnents, including the Sirius Group, and Late Cenozoic glacial history of the southern Prince Albert Mountains, Victoria Land, Antarctica SANDRA PASSCHIER,I ANJA L.L.M. VERBERS,2 FREDERIK M. VAN DER WATEREN,3 FRANSJ.M. VERMEULEN4 IDepartment qfGeological Sciences, Ohio State University, 130 Orton Hall, 155 South Oval Mall, Columbus, OH 43210, US.A. 2Physical Geography Department, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands 3 Department if Earth Sciences, Free University, De Boelelaan 1085, 1081 HVAmsterdam, The Netherlands 4Netherlands Institute ifApplied Geoscience TNO/National Geological Survey, Section ifGeochemical Mapping, Po. Box 157, 2000 AD Haarlem, The Netherlands ABSTRACT. The southern Prince Albert Mountains, between David and Mawson Glaciers (75 °30' to 76° S) inVictoria Land, Antarctica, comprise a series of nunataks with elevations ranging from 800 m near the coast to 2300 m cv 130 km inland. Geochemical and grain-size analyses of tills from these nunataks reveal three major groups of deposits: (1) coarse to medium sandy tills, found on glacially streamlined summit plateaus of Kirk- patrick Basalt above 2000 m a.s. !. , with geochemical compositions very similar to those of the underlyingJurassic Kirkpatrick Basalt; (2) bimodal silty and sandy tills of the Sirius Group with FerrarjBeacon-dominated geo­ chemical compositions, at elevations of 1300-1600 m a.s.l. on striated summit plateaus and high-elevation terraces; (3) fine-grained tills with high Si02 contents from ice-cored moraines at the lee sides of large nunataks. The geochemical composition of sandy tills from the highest summit plateaus suggests that valleys had not yet cut through the Kirkpatrick Basalt and into Beacon and Ferrar rocks at the time of deposition.
    [Show full text]
  • Late Quaternary History of Reedy Glacier Brenda Hall Principal Investigator; University of Maine, Orono, [email protected]
    The University of Maine DigitalCommons@UMaine University of Maine Office of Research and Special Collections Sponsored Programs: Grant Reports 5-30-2007 Collaborative Research: Late Quaternary History of Reedy Glacier Brenda Hall Principal Investigator; University of Maine, Orono, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports Part of the Climate Commons, and the Glaciology Commons Recommended Citation Hall, Brenda, "Collaborative Research: Late Quaternary History of Reedy Glacier" (2007). University of Maine Office of Research and Sponsored Programs: Grant Reports. 154. https://digitalcommons.library.umaine.edu/orsp_reports/154 This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Final Report: 0229034 Final Report for Period: 06/2006 - 05/2007 Submitted on: 05/30/2007 Principal Investigator: Hall, Brenda L. Award ID: 0229034 Organization: University of Maine Title: Collaborative Research: Late Quaternary History of Reedy Glacier Project Participants Senior Personnel Name: Hall, Brenda Worked for more than 160 Hours: Yes Contribution to Project: Brenda Hall has led the mapping effort at Reedy Glacier. She is supervising a graduate student who is working on this project. In addition, she has undertaken all of the radiocarbon work. Post-doc Graduate Student Name: Bromley, Gordon Worked for more than 160 Hours: Yes Contribution to Project: Gordon Bromley is the principal graduate student on the University of Maine portion of this collaborative project.
    [Show full text]
  • Prydz Bay Region, East Antarctica J.M
    Antarctic Science 18 (1), 83–99 (2006) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102006000083 A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica J.M. WHITEHEAD1*, P.G. QUILTY2, B.C. MCKELVEY3 and P.E. O’BRIEN4 1Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 2School of Earth Sciences University of Tasmania, Private Bag 79, Hobart, TAS 7001, Australia 3Division of Earth Sciences, University of New England, Armidale, NSW 2351, Australia 4Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia *[email protected] Abstract: The Cenozoic glacial history of East Antarctica is recorded in part by the stratigraphy of the Prydz Bay–Lambert Graben region. The glacigene strata and associated erosion surfaces record at least 10 intervals of glacial advance (with accompanying erosion and sediment compaction), and more than 17 intervals of glacial retreat (enabling open marine deposition in Prydz Bay and the Lambert Graben). The number of glacial advances and retreats is considerably less than would be expected from Milankovitch frequencies due to the incomplete stratigraphic record. Large advances of the Lambert Glacier caused progradation of the continental shelf edge. At times of extreme glacial retreat, marine conditions reached > 450 km inland from the modern ice shelf edge. This review presents a partial reconstruction of Cenozoic glacial extent within Prydz Bay and the Lambert Graben that can be compared to eustatic sea-level records from the southern Australian continental margin. Received 1 December 2004, accepted 15 July 2005 Key words: glaciation, ice sheet, Milankovitch, Prince Charles Mountains Introduction Study area In recent years there has been considerable investigation of This paper reviews the Cenozoic stratigraphy of the the Cenozoic geology of the Lambert Graben and Prydz Antarctic continent and margin from 60°E to 80°E.
    [Show full text]
  • University Microfilms, a XEROX Company, Ann Arbor, Michigan
    I I 72-15,173 BEHLING, Robert Edward, 1941- PEDOLOGICAL DEVELOPMENT ON MORAINES OF THE MESERVE GLACIER, ANTARCTICA. The Ohio State University in cooperation with Miami (Ohio) University, Ph.D., 1971 Geology University Microfilms,A XEROX Company , Ann Arbor, Michigan PEDOLOGICAL DEVELOPMENT ON MORAINES OF THE MESERVE GLACIER, ANTARCTICA DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert E. Behling, B.Sc., M*Sc. ***** The Ohio State University 1971 Approved by Adv Department f Geology PLEASE NOTE: Some pages have indistinct print. Filmed as received. University Microfilms, A Xerox Education Company ACKNOWLEDGEMENTS This study could not have been possible without the cooperation of faculty members of the departments of agronomy, mineralogy, and geology, I wish to thank Dr. R. P. Goldthwait as chairman of my committee, Dr. L. P. Wilding and Dr. R. T. Tettenhorst as members of my reading committee, as well as Dr. C. B. Bull and Dr. K. R. Everett for valuable assistance and criticism of the manuscript. A special thanks is due Dr. K. R. Everett for guidance during that first field season, and to Dr. F. Ugolini who first introduced me to the problems of weathering in cold deserts. Numerous people contributed to this end result through endless discussions: Dr. Lois Jones and Dr. P. Calkin receive special thanks, as do Dr. G. Holdsworth and Maurice McSaveney. Laboratory assistance was given by Mr. Paul Mayewski and R. W. Behling. Field logistic support in Antarctica was supplied by the U.S.
    [Show full text]
  • Analysis of Groundwater Flow Beneath Ice Sheets
    SE0100146 Technical Report TR-01-06 Analysis of groundwater flow beneath ice sheets Boulton G S, Zatsepin S, Maillot B University of Edinburgh Department of Geology and Geophysics March 2001 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 32/ 23 PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK Analysis of groundwater flow beneath ice sheets Boulton G S, Zatsepin S, Maillot B University of Edinburgh Department of Geology and Geophysics March 2001 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Summary The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report /Boulton and others, 1999/. It was based on a two- dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is develop- ed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel.
    [Show full text]
  • Orbital Control of Productivity and of Sea-Ice Production/Drifting in the Central Arctic Ocean During the Late Quaternary
    Geophysical Research Abstracts Vol. 21, EGU2019-1743, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license. Orbital control of productivity and of sea-ice production/drifting in the central Arctic Ocean during the late Quaternary Claude Hillaire-Marcel (1), Anne de Vernal (1), Yanguang Liu (2), Jenny Maccali (3), Karl Purcell (1), Bassam Ghaleb (1), Allison Jacobel (4), Rüdiger Stein (5), Jerry McManus (4), and Michel Crucifix (6) (1) GEOTOP-UQAM, Université du Québec, Montreal, Canada ([email protected]), (2) First Institute of Oceanography, State Oceanic Administration, Qingdao, China (yanguangliu@fio.org.cn), (3) Department of Earth Sciences, University of Bergen, Norway ([email protected]), (4) Lamont-Doherty Earth Observatory of Columbia University, New-York, USA ([email protected]), (5) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ([email protected]), (6) ELIC, Université catholique de Louvain, Louvain-la-Neuve, Belgium (michel.crucifi[email protected]) The recently revised chronostratigraphy of the central Arctic Ocean sedimentary sequences (https://doi.org/10.1002/2017GC007050) provides the means to insert the Arctic paleoceanography into the Earth’s global climate history. Based on magnetostratigraphy, 14C ages and 230Th-231Pa excess extinction ages in a series of sedimentary cores raised from the Mendeleev and Lomonosov ridges by the R/V Polarstern, Healy and MV Xue Long ice-breakers, with chronological complementary information from pre-2000 studies, we have been able to estimate sedimentation rates ranging from less than a few mm/ka to a few cm/ka along these ridges, with the highest accumulation rates eastward, near the ice-factories of the Russian shelf.
    [Show full text]