<<

TheThe BESSYBESSY SoftSoft XX--RayRay SASESASE FELFEL (Free(Free ElectronElectron Laser)Laser)

Roland Müller

EPICS Meeting Spring `02, BESSY, FEL facilities

infrared visible - uv Classical FEL Scheme bunch train + optical resonator

coherent bunching emission λ SASE FEL Scheme (Self electron bunch train undulator (spontaneousAmplified emission) undulator (amplifier) Spontaneous

Emission) coherent bunching emission λ Goal:

Photon Energy Eφ 0.02 – 1 keV SASE-FEL Setup Wavelength λ 60 – 1.2 nm Peak Brilliance B ~1029 *)

Pulse duration στ 20 – 100 fs *) photons/s/mm2/mrad2/0.1% bw

Required*): Beam Current I 1.5 – 5.0 kA Beam Energy E 0.7 – 2.25 GeV Energy spread σE 1 – 2 MeV -6 Emmittance εn ≤ 1.5 10 π m rad Undulator Length Lund ~ 50 m *) Parameters are coupled History of SASE

1980 First proposal 1996 First experimental observation UCLA: λ = 16 µm Dec. 1999 APS: lasing at λ = 523 nm Feb. 2000 DESY: lasing at λ = 80 nm Sep. 2000 APS: saturation at λ = 523 nm Feb. 2001 VISA/BNL: saturation at λ = 800 nm Apr. 2001 APS: saturation at λ = 385 and λ = 265 nm Sep. 2001 DESY: saturation at λ = 100 nm Oct. 2001 First user experiments @ DESY-TTF

Development steps towards VUV and X-ray FELs SASE FEL User Facilities Under construction and/or operational •TTF / DESY* λ > 6 nm (80 nm) •LEUTL / APS* λ > 120 nm (265 nm)

Proposed • BESSY λ≥1.2 nm (1 keV) •SLAC λ≥1.5 Å (8 keV) •SPring8 λ≥15 nm → 3.6 nm → 0.1 nm •TESLA λ≥0.85 Å (14 keV) • ELETTRA, ENEA, Daresbury …...

* Hybrid between FEL development & user facility TESLA X-ray FEL λ > 0.85 Å (14 keV): X-rays

linear collider TTF FEL: TESLA Test Facility

λ > 6 nm (200 eV): VUV & XUV User Feedback

Important issues: • Photon energy:………………………… 20 eV - 1.0 keV (60 ≤ λ ≤ 1.2 nm) • Micro-pulse duration:………………………… τ≤20 fs • Narrow spectral width:……………………… ∆λ/λ ≤ 10-4 • Synchronization with fs lasers • As many as possible photons per pulse • High average brilliance

Proposal: FEL user-facility that becomes operational after 2007 The BESSY FEL 1.5 - 2.25 GeV linac multiple

TESLA module

drift for 3rd extractionharmonic cavity injector monochromators and beam-blowup BESSY II undulator UE46 bunch compressor The BESSY FEL

Separate focussing undulator (control of the β-function)

undulator: 20 - 50 m

planar APPLE ~2.5 m ⇓

••× × •

••× × • shift drift: ~2.0 m - quadrupole gap - end pole correction (wavelength change) - phase matching (polarization change) - orbit correction - orbit diagnose The BESSY FEL Injector Hall

BESSY II Linac Tunnel Cryogenic Hall

Experimental λ > 1.2 nm (1 keV): VUV & soft X-rays Hall Performance photon energy (keV) photon energy (keV) 0.01 0.1 1 0.0010.01 0.1 1 10

33 10 TW laser 12 TESLA FEL 10 TESLA FEL BESSY FEL LCLS

) BESSY FEL

w 30 b 10 9 % TTF FEL TT F 10

1

.

0

/

2 p

e

d

c e

a

n a

r

a k

i

m l 27

/ l

i p

2 10

r o

b

m 6 w

k e m 10

/ plasma lasers

a r

c

e (

e W p

s HHG

/ )

s

n 24

o

t 10

o h APS p BESSY II 3 ( 10 mA single bunch 10 U125 ∆λ/λ = 0.1 % U41 U49 U49

s dye lasers

s 21 s

r

a

l 10 UE56 e

G

y

U125 m

: i

b

c BESSY

d

u

x

N R e 10 mA single bunch ∆λ/λ =0.1% 100 100 10 1 1000 100 10 1 0.1 wavelength (nm) wavelength (nm) The BESSY Soft X-Ray SASE FEL COMPLEMENTARITY of the VUV and X-RAY FEL

VUV and SOFT X-RAYS X-RAYS BESSY FEL TESLA X-FEL

20 eV to 1 keV PHOTON ENERGY 500 eV to 15 keV 1mJ PULSE ENERGY 1mJ 200 fs to 20 fs PULSE LENGTH 100 fs 1 kHz (1-25 pulses) REPETITION RATE 5 Hz (7200 pulses) Critical Issues  For any SASE-FEL Project: – Stability of the electron beam – Diagnostics – Spiking nature of the SASE-FEL radiation – Synchronization with other laser sources  Specific for the BESSY SASE-FEL: – Cryogenic requirements (15 MV/m, cw) – Optimization of the photo-injector – Beamlines Summary (1) Building of a “basic” FEL user facility (based on super-conducting linac technology from DESY)

* Goal: • Ppeak ≥ 5GW  • σt ≥ 35 fs construction of a SASE-FEL for the UV to • ∆λ/λ =10-3 soft X-ray spectral range FEL Emax λmin EΦ (eV)  construction of three parallel SASE-FEL (GeV) (nm) beamlines 1 0.85 15.0 85 2 1.70 2.5 500  Synchronization with conventional fs 3 2.25 1.2 1000 * 28 2 2 laser-sources: jitter ≤ 200 fs (rms) Bpeak ≥ 10 ph/sec/mm /mrad /0.1%bw)

Critical tasks: Major cost factors:  Injector system  Civil engineering   Bunch compressors Cryogenic plant  Accelerators  Diagnostics  Undulators  Feedback (Microphonics, Timing …)  Beamlines  Beamlines Summary (2) Implementing FEL enhancements*

 Enhancing the spectral resolution: ∆λ/λ = 10-3 → <10-4 (Seeding)  Shortening the micro-pulse duration:

σt = 160 fs → 20 fs → ? fs  Flexible FEL output (fast scanning, chirping, etc.)  Increasing the average brilliance

*Not all enhancements can be obtained simultaneously