Targeting the IL33–NLRP3 Axis Improves Therapy for Experimental Cerebral Malaria
Targeting the IL33–NLRP3 axis improves therapy for experimental cerebral malaria Patrick Strangwarda, Michael J. Haleya,1, Manuel G. Albornoza,1, Jack Barringtona,1, Tovah Shawa, Rebecca Dookiea, Leo Zeefa, Syed M. Bakera, Emma Wintera, Te-Chen Tzengb, Douglas T. Golenbockb, Sheena M. Cruickshanka, Stuart M. Allana, Alister Craigc, Foo Y. Liewd,e, David Brougha,2,3, and Kevin N. Coupera,2,3 aSchool of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom; bDivision of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; cDepartment of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; dDepartment of Immunology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; and eSchool of Biology and Basic Medical Sciences, Soochow University, 215006 Suzhou, China Edited by Michael B. A. Oldstone, The Scripps Research Institute, La Jolla, CA, and approved June 4, 2018 (received for review January 30, 2018) Cerebral malaria (CM) is a serious neurological complication caused recovery by activating the brain endothelium, causing permeability by Plasmodium falciparum infection. Currently, the only treatment of the blood–brain barrier, activation of astrocytes and microglia, for CM is the provision of antimalarial drugs; however, such treat- disruption of neuronal signaling, and recruitment of circulating ment by itself often fails to prevent death or development of neu- leukocytes (1, 7–9). All of these events have been observed in rological sequelae. To identify potential improved treatments for brains of individuals with fatal CM (1, 6–9).
[Show full text]