Dithranol Targets Keratinocytes, Their Crosstalk with Neutrophils And

Total Page:16

File Type:pdf, Size:1020Kb

Dithranol Targets Keratinocytes, Their Crosstalk with Neutrophils And RESEARCH ARTICLE Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis Theresa Benezeder1†, Clemens Painsi2†, VijayKumar Patra1, Saptaswa Dey1, Martin Holcmann3, Bernhard Lange-Asschenfeldt2, Maria Sibilia3, Peter Wolf1* 1Department of Dermatology, Medical University of Graz, Graz, Austria; 2State Hospital Klagenfurt, Klagenfurt am Wo¨ rthersee, Austria; 3Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria Abstract Despite the introduction of biologics, topical dithranol (anthralin) has remained one of the most effective anti-psoriatic agents. Serial biopsies from human psoriatic lesions and both the c-Jun/JunB and imiquimod psoriasis mouse model allowed us to study the therapeutic mechanism of this drug. Top differentially expressed genes in the early response to dithranol belonged to keratinocyte and epidermal differentiation pathways and IL-1 family members (i.e. IL36RN) but not elements of the IL-17/IL-23 axis. In human psoriatic response to dithranol, rapid decrease in expression of keratinocyte differentiation regulators (e.g. involucrin, SERPINB7 and SERPINB13), antimicrobial peptides (e.g. ß-defensins like DEFB4A, DEFB4B, DEFB103A, S100 proteins like S100A7, S100A12), chemotactic factors for neutrophils (e.g. CXCL5, CXCL8) and neutrophilic infiltration was followed with much delay by reduction in T cell infiltration. Targeting keratinocytes rather than immune cells may be an alternative approach in particular for topical anti-psoriatic treatment, an area with high need for new drugs. *For correspondence: [email protected] †These authors contributed equally to this work Introduction With the development and market introduction of biologics, much progress has been made in recent Competing interests: The years in the systemic treatment of psoriasis. Currently, targeted therapy with antibodies against IL- authors declare that no 17 or IL-23 exhibits high efficacy and allows complete or almost complete clinical clearance of psori- competing interests exist. asis lesions in a high percentage of cases (Blauvelt et al., 2017; Langley et al., 2014; Papp et al., Funding: See page 24 2017; Reich et al., 2018). However, patients with limited body area involvement (i.e. mild forms of Received: 17 March 2020 psoriasis) who represent the majority of psoriasis patients with up to 90% (Stern et al., 2004) have Accepted: 18 May 2020 been neglected. Not much innovation has occurred in the past few years on topical treatment of Published: 02 June 2020 psoriasis that is mainly prescribed to these patients. Steroids, vitamin D3 and vitamin A analogues are most commonly used as topical agents in such patients, but besides changes in their pharmaceu- Reviewing editor: Ulrich Mrowietz, Christian-Albrechts- tical formulation, they have not been developed further in recent years (de Korte et al., 2008; Universita¨ t zu Kiel, Kiel, Germany Krueger et al., 2001; Langley et al., 2011; Schaarschmidt et al., 2015). Short courses of dithranol (1,8-dihydroxy-9-anthracenone or anthralin) have been successfully used as intermittent topical treat- Copyright Benezeder et al. ment of psoriasis since 1916 (Nast et al., 2012; Sehgal et al., 2014; Vleuten et al., 1996). Despite This article is distributed under its numerous disadvantages like brown staining and irritation of perilesional skin, dithranol has the terms of the Creative Commons Attribution License, remained one of the most effective topical treatment modalities in psoriasis. Analogous to the most which permits unrestricted use recent generation of biologics (including anti-IL-17 and anti-IL-23 antibodies), dithranol delivers and redistribution provided that PASI75 rates in 66–82.5% of patients with fast action and clearance of skin lesion within very few the original author and source are weeks (Keme´ny et al., 1990; Painsi et al., 2015b; Sehgal et al., 2014; van de Kerkhof, 2015). credited. Although dithranol has been used for many years, its exact mechanism of action has remained Benezeder et al. eLife 2020;9:e56991. DOI: https://doi.org/10.7554/eLife.56991 1 of 31 Research article Immunology and Inflammation largely unknown (Holstein et al., 2017; Keme´ny et al., 1990; Kucharekova et al., 2006; Sehgal et al., 2014). With the aim of unraveling dithranol’s therapeutic mechanisms and to possibly uncover new tar- gets for topical treatment of psoriasis, we conducted a clinical trial and employed several mouse models including the c-Jun/JunB knockout model (Zenz et al., 2005) and the imiquimod psoriasis model (van der Fits et al., 2009) in order to address this issue and elucidate dithranol’s effects. In this study, we demonstrate that dithranol exerts its anti-psoriatic effects by directly targeting kerati- nocytes and their crosstalk with neutrophils, as well as disrupting the IL-36 inflammatory loop. Con- sistent with this finding, we observed that dithranol’s therapeutic activity was completely independent of its pro-inflammatory effect mainly on perilesional skin, thus overthrowing the long- believed paradigm that dithranol-induced irritation is crucial for its anti-psoriatic action and unravel- ing irritation merely as a bystander effect of treatment. Results Topical dithranol leads to fast reduction in PASI score linked to decrease in epidermal hyperproliferation and delayed reduction of inflammatory infiltrate in psoriatic skin As depicted in Figure 1C (and Figure 1—figure supplement 1), dithranol did lead to a fast reduc- tion of psoriatic skin lesions in most of the 15 patients of the study, as determined by psoriasis area and severity index (PASI) and local psoriasis severity index (PSI) of marker lesions. As shown in Table 1, the mean decrease in PASI score was 58% after 2–3 weeks, confirming its high clinical effi- cacy (Painsi et al., 2015a; Painsi et al., 2015b; Swinkels et al., 2004). Remarkably, dithranol treat- ment did lead to a visible inflammatory response only at perilesional skin sites, but not within psoriatic plaques and there was no correlation between dithranol-induced erythema and its anti-pso- riatic effect (Figure 1—figure supplement 2). The clinical response was confirmed by the results of histological analysis of skin biopsies taken throughout the dithranol treatment course (Figure 1A and B). Dithranol application led to a significant reduction in epidermal hyperplasia (as measured by thickness of epidermis). Intriguingly, there was no significant change in dermal infiltrate score during treatment. At the follow-up visit, hyperplasia of the epidermis was reduced further and cellular infil- trate in the dermis was significantly diminished (Figure 2). Clinical response to dithranol in psoriasis patients is linked to I) fast upregulation of keratinization genes and downregulation of neutrophil chemotactic genes and neutrophilic infiltration followed by II) delayed downregulation of inflammatory response-related genes and proteins Dithranol slowly diminished CD3, CD4, FoxP3 and CD8 cell counts in the dermis as evidenced by unaffected cell numbers early on during the treatment course and significant reduction only at the follow-up visit (4–6 weeks after end of treatment) (Figure 2). The response of T cells in the epidermis occurred a little earlier, with significant reduction present already at the end of treatment (week 2–3) (Figure 2). In agreement with other studies (Holstein et al., 2017; Swinkels et al., 2002a; Vleuten et al., 1996; Yamamoto and Nishioka, 2003), we found a fast decrease in epidermal hyperproliferation (epidermal thickness, Ki-67 and CK16 staining) at end of treatment (week 2–3). Neutrophil numbers (as assessed by myeloperoxidase staining) in epidermis and dermis were also significantly reduced at that time point. An increase in the number of Langerhans cells in the epider- mis (as indicated by CD1a staining) was detected at the follow-up visit. Microarray analysis comparing lesional skin at day 6 of treatment with lesional skin samples at baseline revealed that dithranol led to differential expression of 62 genes including 17 genes with reduced and 45 genes with increased expression. Among these differentially expressed genes (DEGs), there was a significant upregulation of genes involved in keratinization and keratinocyte dif- ferentiation (e.g. KRT2, LCE1C, KRT73, LCE1A) and establishment of skin barrier (e.g. FLG2, HRNR, FLG). Furthermore, dithranol downregulated genes of antimicrobial peptides (AMPs) such as ß- defensin-2 (DEFB4A, DEFB4B) and chemoattractants for neutrophils (e.g. CXCL5, CXCL8, PPBP1, TREM1)(Table 2). Benezeder et al. eLife 2020;9:e56991. DOI: https://doi.org/10.7554/eLife.56991 2 of 31 Research article Immunology and Inflammation ! " Biopsy sampling Non-lesional skin 1b 2 1a 4 3 Psoriasis patients n = 15 Marker lesion Dithranol # !"#$% !"#$/ 012$'3 456"47614 8'))'9:;< &'(") *+,-$.. &'(") *+,-$/ &'(") *+,-$= &'(") *+,-$. Figure 1. Dithranol leads to a fast reduction of psoriatic skin lesions as determined by local psoriasis severity index (PSI) of marker lesions. (A,B) 15 psoriasis patients were treated with dithranol. Skin biopsies were taken from marker lesions at multiple timepoints: 1a = lesional skin at baseline, 2 = lesional skin at day 6, 3 = lesional skin at end of treatment, week 2–3, 4 = lesional skin at follow-up, 4–6 weeks after end of treatment. In addition, non-lesional skin at baseline (1b) was sampled. (C) Representative images of lesional psoriatic skin and
Recommended publications
  • Data Sheet Huil36g (152 A.A.)
    Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin-36G (IL36G) is a pro-inflammatory cytokine that plays an important role in the pathophysiology of several diseases. IL36A, IL36B and IL36G (formerly IL1F6, IL1F8, and IL1F9) are IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36G is secreted when transfected into 293-T cells and could constitute part of an independent signaling system analogous to that of IL1A and IL1B receptor agonist and interleukin-1 receptor type I (IL1R1). Furthermore, IL36G also can function as an agonist of NFκB activation through the orphan IL1- receptor-related protein 2. Human IL36G (152 a.a.) shares 58%, 59%, 68% and 69% amino acid sequence identity with mouse, rat, bovine and equine IL36G, respectively, and 23-57% amino acid sequence identity with other family members. Catalog Number 1110-36F Product Name IL36G (IL-36 gamma), Human (152 a.a.) Recombinant Human Interleukin-36γ IL36G, IL36γ Interleukin 1 Homolog 1 (IL1H1) Interleukin 1-Related Protein 2 (IL1RP2) Interleukin 1 Family, Member 9 (IL1F9) Source Escherichia coli MW ~17.0 kDa (152 amino acids) Sequence SMCKPITGTI NDLNQQVWTL QGQNLVAVPR SDSVTPVTVA VITCKYPEAL EQGRGDPIYL GIQNPEMCLY CEKVGEQPTL QLKEQKIMDL YGQPEPVKPF LFYRAKTGRT STLESVAFPD WFIASSKRDQ PIILTSELGK SYNTAFELNI ND Accession Number Q9NZH8 Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The ED50 as determined by its ability to induce IL-8 secretion by human preadipocytes is less than 10 ng/ml, corresponding to a specific activity of >1 × 105 IU/mg.
    [Show full text]
  • A Left/Right Comparison of Twice-Daily Calcipotriol Ointment and Calcitriol Ointment in Patients with Psoriasis: the Effect on Keratinocyte Subpopulations
    Acta Derm Venereol 2004; 84: 195–200 INVESTIGATIVE REPORT A Left/Right Comparison of Twice-Daily Calcipotriol Ointment and Calcitriol Ointment in Patients with Psoriasis: The Effect on Keratinocyte Subpopulations Mannon E.J. FRANSSEN, Gys J. DE JONGH, Piet E.J. VAN ERP and Peter C.M. VAN DE KERKHOF Department of Dermatology, University Medical Centre Nijmegen, The Netherlands Vitamin D3 analogues are a first-line treatment of Calcipotriol (Daivonex1,50mg/g ointment, Leo chronic plaque psoriasis, but so far, comparative clinical Pharmaceutical Products, Denmark) has been investi- studies on calcipotriol and calcitriol ointment are sparse, gated intensively during the last decade, and has proven and in particular no comparative studies are available on to be a valuable tool in the management of chronic cell biological effects of these compounds in vivo. Using plaque psoriasis. A review by Ashcroft et al. (1), based on flow cytometric assessment, we investigated whether these a large number of randomized controlled trials, showed compounds had different effects on the composition and that calcipotriol was at least as effective as potent DNA synthesis of epidermal cell populations responsible topical corticosteroids, 1a,-25-dihydroxycholecalciferol for the psoriatic phenotype. For 8 weeks, 20 patients with (calcitriol), short-contact dithranol, tacalcitol and coal psoriasis vulgaris were treated twice daily with calcipo- tar. Recently, Scott et al. (2) presented an overview of triol and calcitriol ointment in a left/right comparative studies on the use of calcipotriol ointment in the study. Before and after treatment, clinical assessment of management of psoriasis. They reconfirmed the super- target lesions was performed, together with flow cyto- ior efficacy of a twice-daily calcipotriol ointment metric analysis of epidermal subpopulations with respect regimen to the treatments as mentioned above, and to keratin (K) 10, K6, vimentin and DNA distribution.
    [Show full text]
  • 1 Structure and Function of the Skin
    Go Back to the Top To Order, Visit the Purchasing Page for Details 1 Chapter 1 Structure and Function of the Skin The skin is the human body’s its largest organ, covering 1.6 m2 of surface area and accounting for approximate- ly 16% of an adult’s body weight. In direct contact with the outside environment, the skin helps to maintain four essential bodily functions: ① retention of moisture and prevention of permeation or loss of other molecules, ② regulation of body temperature, ③ protection of the body from microbes and harmful external influences, and ④ sensation. To understand cutaneous biology and skin diseases, it is very important to learn the structure and functions of normal human skin. A. Skin surface The skin surface is not smooth, but is laced with multiple net- works of fine grooves called sulci cutis. These can be deep or shallow. The slightly elevated areas that are surrounded by shal- lower areas of sulci cutis are called cristae cutis. Sweat pores fed crista cutis by the sweat glands open to the cristae cutis (Fig. 1.1). The orientation of the sulci cutis, which differs depending on body location, is called the dermal ridge pattern. Fingerprints and sulcus cutis patterns on the palms and soles, which are unique to each person, are formed by the sulci cutis. Elastic fibers also run in specific directions in deeper parts of the skin, with the direction depend- aabcdefg h i j klmnopqr ing on the site. Some skin diseases, such as epidermal nevus, are known to occur along specific lines distributed over the body, the Blaschko lines (Fig.
    [Show full text]
  • Genome Sequence, Population History, and Pelage Genetics of the Endangered African Wild Dog (Lycaon Pictus) Michael G
    Campana et al. BMC Genomics (2016) 17:1013 DOI 10.1186/s12864-016-3368-9 RESEARCH ARTICLE Open Access Genome sequence, population history, and pelage genetics of the endangered African wild dog (Lycaon pictus) Michael G. Campana1,2*, Lillian D. Parker1,2,3, Melissa T. R. Hawkins1,2,3, Hillary S. Young4, Kristofer M. Helgen2,3, Micaela Szykman Gunther5, Rosie Woodroffe6, Jesús E. Maldonado1,2 and Robert C. Fleischer1 Abstract Background: The African wild dog (Lycaon pictus) is an endangered African canid threatened by severe habitat fragmentation, human-wildlife conflict, and infectious disease. A highly specialized carnivore, it is distinguished by its social structure, dental morphology, absence of dewclaws, and colorful pelage. Results: We sequenced the genomes of two individuals from populations representing two distinct ecological histories (Laikipia County, Kenya and KwaZulu-Natal Province, South Africa). We reconstructed population demographic histories for the two individuals and scanned the genomes for evidence of selection. Conclusions: We show that the African wild dog has undergone at least two effective population size reductions in the last 1,000,000 years. We found evidence of Lycaon individual-specific regions of low diversity, suggestive of inbreeding or population-specific selection. Further research is needed to clarify whether these population reductions and low diversity regions are characteristic of the species as a whole. We documented positive selection on the Lycaon mitochondrial genome. Finally, we identified several candidate genes (ASIP, MITF, MLPH, PMEL) that may play a role in the characteristic Lycaon pelage. Keywords: Lycaon pictus, Genome, Population history, Selection, Pelage Background Primarily a hunter of antelopes, the African wild dog is a The African wild dog (Lycaon pictus) is an endangered highly distinct canine.
    [Show full text]
  • Huil36g 169 Data Sheet
    Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin-36G (IL36G) is a pro-inflammatory cytokine that plays an important role in the pathophysiology of several diseases. IL36A, IL36B and IL36G; (formerly IL1F6, IL1F8, and IL1F9) are IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36B is secreted when transfected into 293-T cells and could constitute part of an independent signaling system analogous to that of IL1A and IL1B receptor agonist and interleukin-1 receptor type I (IL1R1). Furthermore, IL36G also can function as an agonist of NFκB activation through the orphan IL1- receptor-related protein 2. Recombinant human IL36G is synthesized as a protein that contains no signal sequence, no prosegment and no potential N-linked glycosylation site.There is a 53% amino acid homology between human and mouse IL36G. IL36G also has a 25-55% amino acid homology with IL36G and IL1RN, IL1B, IL36RN, IL36A, IL37, IL36B and IL1F10. Catalog Number 1110-36E Product Name IL36G (IL-36 gamma), Human (169 a.a.) Recombinant Human Interleukin-36γ IL36G, IL36γ Interleukin 1 Homolog 1 (IL1H1) Interleukin 1-Related Protein 2 (IL1RP2) Interleukin 1 Family, Member 9 (IL1F9) Source Escherichia coli MW 18.7 kDa (169 amino acids) Sequence MRGTPGDADG GGRAVYQSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY RAKTGRTSTL ESVAFPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND Accession Number Q9NZH8 Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The specific activity is determined by its binding ability in a functional ELISA.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • 32-12012: Human Beta Defensin-3 Description Product
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-12012: Human Beta Defensin-3 Gene : DEFB103A Gene ID : 414325 Uniprot ID : P81534 Alternative Name : DEFB-3, Beta-defensin 3, Defensin, beta 103, Defensin-like protein Description Source: Genetically modified E.coli. Predicted MW: Monomer, 5.2 kDa (45 aa) Beta-Defensin 3 (BD-3), also known as DEFB-3, is a member of the defensin class of antimicrobial peptides. Beta defensins exert host defense responses against viruses, bacteria, and fungi through the binding and permeabilizing of microbial membranes. BD-3 expression is stimulated by interferon-gamma and is an important molecule during adaptive immunity. BD-3 functions to activate monocytes and mast cells, and has antibacterial functions towards Gram-negative and Gram-positive bacteria. Further, BD-3 blocks human immunodeficiency virus type 1 (HIV-1) replication through the downregulation of the HIV-1 co-receptor, CXCR4. Product Info Amount : 20 µg / 100 µg Purification : Reducing and Non-Reducing SDS PAGE at >= 95% Lyophilized from a sterile (0.2 micron) filtered aqueous solution containing 0.1% Trifluoroacetic Content : Acid (TFA) Sterile water at 0.1 mg/mL Storage condition : Store at -20°C Amino Acid : GIINTLQKYY CRVRGGRCAV LSCLPKEEQI GKCSTRGRKC CRRKK Application Note Endotoxin: Less than 0.1 ng/µg (1 IEU/µg) as determined by LAL test. Centrifuge vial before opening, Suspend the product by gently pipetting the above recommended solution down the sides of the vial. DO NOT VORTEX. Allow several minutes for complete reconstitution. For prolonged storage, dilute to working aliquots in a 0.1% BSA solution, store at -80°C and avoid repeat freeze thaws.
    [Show full text]
  • Genetic Determinants of Circulating Interleukin-1 Receptor Antagonist Levels and Their Association with Glycemic Traits
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trepo - Institutional Repository of Tampere University GENETIC DETERMINANTS OF CIRCULATING INTERLEUKIN-1 RECEPTOR ANTAGONIST LEVELS AND THEIR ASSOCIATION WITH GLYCEMIC TRAITS Marja-Liisa Nuotio Syventävien opintojen kirjallinen työ Tampereen yliopisto Lääketieteen yksikkö Tammikuu 2015 Tampereen yliopisto Lääketieteen yksikkö NUOTIO MARJA-LIISA: GENETIC DETERMINANTS OF CIRCULATING INTERLEUKIN-1 RECEPTOR ANTAGONIST LEVELS AND THEIR ASSOCIATION WITH GLYCEMIC TRAITS Kirjallinen työ, 57 s. Ohjaaja: professori Mika Kähönen Tammikuu 2015 Avainsanat: sytokiinit, insuliiniresistenssi, tyypin 2 diabetes, tulehdus, glukoosimetabolia, genominlaajuinen assosiaatioanalyysi (GWAS) Tulehdusta välittäviin sytokiineihin kuuluvan interleukiini 1β (IL-1β):n kohonneen systeemisen pitoisuuden on arveltu edesauttavan insuliiniresistenssin kehittymistä ja johtavan haiman β-solujen toimintahäiriöihin. IL-1β:n sisäsyntyisellä vastavaikuttajalla, interleukiini 1 reseptoriantagonistilla (IL-1RA), on puolestaan esitetty olevan suojaava rooli mainittujen fenotyyppien kehittymisessä päinvastaisten vaikutustensa ansiosta. IL-1RA:n suojaavan roolin havainnollistamiseksi työssä Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits tunnistettiin veren IL-1RA- pitoisuuteen assosioituvia geneettisiä variantteja, minkä jälkeen selvitettiin näiden yhteyttä glukoosi- ja insuliinimetaboliaan liittyvien muuttujien-, sekä
    [Show full text]
  • Mapping DNA Structural Variation in Dogs
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Mapping DNA structural variation in dogs Wei-Kang Chen,1,4 Joshua D. Swartz,1,4,5 Laura J. Rush,2 and Carlos E. Alvarez1,3,6 1Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, USA; 2Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; 3Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA DNA structural variation (SV) comprises a major portion of genetic diversity, but its biological impact is unclear. We propose that the genetic history and extraordinary phenotypic variation of dogs make them an ideal mammal in which to study the effects of SV on biology and disease. The hundreds of existing dog breeds were created by selection of extreme morphological and behavioral traits. And along with those traits, each breed carries increased risk for different diseases. We used array CGH to create the first map of DNA copy number variation (CNV) or SV in dogs. The extent of this variation, and some of the gene classes affected, are similar to those of mice and humans. Most canine CNVs affect genes, including disease and candidate disease genes, and are thus likely to be functional. We identified many CNVs that may be breed or breed class specific. Cluster analysis of CNV regions showed that dog breeds tend to group according to breed classes. Our combined findings suggest many CNVs are (1) in linkage disequilibrium with flanking sequence, and (2) associated with breed-specific traits.
    [Show full text]
  • Interleukin (IL)17A, F and AF in Inflammation: a Study in Collageninduced Arthritis and Rheumatoid Arthritis
    bs_bs_banner Clinical and Experimental Immunology ORIGINAL ARTICLE doi:10.1111/cei.12376 Interleukin (IL)-17A, F and AF in inflammation: a study in collagen-induced arthritis and rheumatoid arthritis S. Sarkar,* S. Justa,* M. Brucks,* Summary J. Endres,† D. A. Fox,† X. Zhou,* Interleukin (IL)-17 plays a critical role in inflammation. Most studies to date F. Alnaimat,* B. Whitaker,‡ have elucidated the inflammatory role of IL-17A, often referred to as IL-17. J. C. Wheeler,‡ B. H. Jones§ and IL-17F is a member of the IL-17 family bearing 50% homology to IL-17A S. R. Bommireddy* and can also be present as heterodimer IL-17AF. This study elucidates the *Section of Rheumatology, Department of Medicine, and the Arizona Arthritis Center, distribution and contribution of IL-17A, F and AF in inflammatory arthritis. University of Arizona, Tucson, AZ, †Divison of Neutralizing antibody to IL-17A alone or IL-17F alone or in combination Rheumatology, Department of Internal Medicine, was utilized in the mouse collagen-induced arthritis (CIA) model to eluci- University of Michigan, Ann Arbor, MI, and date the contribution of each subtype in mediating inflammation. IL-17A, F ‡Biologics Research and §Immunology Discovery and AF were all increased during inflammatory arthritis. Neutralization of Research, Janssen Research and Development, IL-17A reduced the severity of arthritis, neutralization of IL-17A+IL-17F had Spring House, PA, USA the same effect as neutralizing IL-17A, while neutralization of IL-17F had no effect. Moreover, significantly higher levels of IL-17A and IL-17F were detected in peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) in comparison to patients with osteoarthritis (OA).
    [Show full text]
  • Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes
    Published OnlineFirst February 18, 2016; DOI: 10.1158/0008-5472.CAN-15-1548 Cancer Tumor and Stem Cell Biology Research Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor- Infiltrating Lymphocytes Geoffrey J. Markowitz1, Pengyuan Yang1,2,3, Jing Fu3, Gregory A. Michelotti4, Rui Chen1, Jianhua Sui5, Bin Yang2, Wen-Hao Qin3, Zheng Zhang6, Fu-Sheng Wang6, Anna Mae Diehl4, Qi-Jing Li7, Hongyang Wang3, and Xiao-Fan Wang1 Abstract Chronic inflammation in liver tissue is an underlying cause of IL18R1 deletion increased tumor burden. Mechanistically, we hepatocellular carcinoma. High levels of inflammatory cytokine foundthatIL18exertedinflammation-dependent tumor-sup- IL18 in the circulation of patients with hepatocellular carcinoma pressive effects largely by promoting the differentiation, activ- correlates with poor prognosis. However, conflicting results have ity, and survival of tumor-infiltrating T cells. Finally, differences been reported for IL18 in hepatocellular carcinoma development in the expression of IL18 in tumor tissue versus nontumor and progression. In this study, we used tissue specimens from tissueweremorepredictiveofpatientoutcomethanoverall hepatocellular carcinoma patients and clinically relevant mouse tissue expression. Taken together, our findings resolve a long- models of hepatocellular carcinoma to evaluate IL18 expression standing contradiction regarding a tumor-suppressive role for and function. In a mouse model of liver fibrosis that recapitulates IL18 in established hepatocellular carcinoma and provide a a tumor-promoting microenvironment, global deletion of the mechanistic explanation for the complex relationship between IL18 receptor IL18R1 enhanced tumor growth and burden. Sim- its expression pattern and hepatocellular carcinoma prognosis. ilarly, in a carcinogen-induced model of liver tumorigenesis, Cancer Res; 76(8); 1–12.
    [Show full text]