Targeting the IL33–NLRP3 Axis Improves Therapy for Experimental Cerebral Malaria

Total Page:16

File Type:pdf, Size:1020Kb

Targeting the IL33–NLRP3 Axis Improves Therapy for Experimental Cerebral Malaria Targeting the IL33–NLRP3 axis improves therapy for experimental cerebral malaria Patrick Strangwarda, Michael J. Haleya,1, Manuel G. Albornoza,1, Jack Barringtona,1, Tovah Shawa, Rebecca Dookiea, Leo Zeefa, Syed M. Bakera, Emma Wintera, Te-Chen Tzengb, Douglas T. Golenbockb, Sheena M. Cruickshanka, Stuart M. Allana, Alister Craigc, Foo Y. Liewd,e, David Brougha,2,3, and Kevin N. Coupera,2,3 aSchool of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom; bDivision of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; cDepartment of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; dDepartment of Immunology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; and eSchool of Biology and Basic Medical Sciences, Soochow University, 215006 Suzhou, China Edited by Michael B. A. Oldstone, The Scripps Research Institute, La Jolla, CA, and approved June 4, 2018 (received for review January 30, 2018) Cerebral malaria (CM) is a serious neurological complication caused recovery by activating the brain endothelium, causing permeability by Plasmodium falciparum infection. Currently, the only treatment of the blood–brain barrier, activation of astrocytes and microglia, for CM is the provision of antimalarial drugs; however, such treat- disruption of neuronal signaling, and recruitment of circulating ment by itself often fails to prevent death or development of neu- leukocytes (1, 7–9). All of these events have been observed in rological sequelae. To identify potential improved treatments for brains of individuals with fatal CM (1, 6–9). In particular, it is CM, we performed a nonbiased whole-brain transcriptomic time- believed that cerebrovascular dysfunction is a critical pathological course analysis of antimalarial drug chemotherapy of murine process in CM development and fatal outcome (1, 7, 9). There- experimental CM (ECM). Bioinformatics analyses revealed IL33 as fore, intracerebral inflammatory responses at time of treatment a critical regulator of neuroinflammation and cerebral pathology may prevent re-establishment of brain homeostasis, leading to the that is down-regulated in the brain during fatal ECM and in the failure of antimalarial drug treatment. acute period following treatment of ECM. Consistent with this, ad- In this study, to identify immune candidates for therapy of ministration of IL33 alongside antimalarial drugs significantly im- CM, we optimized a preclinical model of Plasmodium berghei proved the treatment success of established ECM. Mechanistically, (Pb) ANKA-induced murine experimental cerebral malaria IL33 treatment reduced inflammasome activation and IL1β produc- (ECM) (10) where antimalarial drug treatment of established tion in microglia and intracerebral monocytes in the acute recovery ECM leads to suboptimal recovery, associated with significant period following treatment of ECM. Moreover, treatment with the mortality and development of severe cerebral pathology. Using NLRP3-inflammasome inhibitor MCC950 alongside antimalarial this infection–drug cure model of ECM, we have performed a drugs phenocopied the protective effect of IL33 therapy in improv- nonbiased whole-brain RNA-seq time-course analysis during ing the recovery from established ECM. We further showed that antimalarial drug chemotherapy. We subsequently identified IL1β release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our re- Significance sults therefore demonstrate that manipulation of the IL33–NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM. Cerebral malaria (CM) is a neurological complication of malaria infection that, despite antimalarial drug treatment, results in fatality or neurodisability in approximately 25% of cases. Thus, malaria | IL33 | NLRP3 | inflammasome | inflammation there is an urgent clinical need to develop therapies that can improve the efficacy of antimalarial drugs to prevent or reverse erebral malaria (CM) is a severe manifestation of Plasmo- – cerebral pathology. Here, we show in an experimental mouse Cdium falciparum infection, which affects 2 3 million people model of CM (ECM) that IL33 administration can improve sur- each year, mainly young children in Africa (1). The only treatment vival and reduce pathology in the brain over antimalarial drugs for CM is antimalarial drugs, typically in the form of parenteral alone. Mechanistically, we demonstrate that IL33 enhances artesunate or quinine compounds. Such treatment fails to prevent recovery from ECM by inhibiting NLRP3 inflammasome-induced mortality in a quarter of CM patients, leading to the death of inflammatory responses within the brain. These results suggest ∼300,000 people each year (1–3). Moreover, up to 26% of indi- that IL33 and NLRP3 inflammasome inhibitors may be effective viduals develop residual neurological deficits following antima- adjunctive therapies for CM. larial drug treatment and recovery from CM (4, 5). Thus, CM remains a leading cause of mortality and neurodisability in trop- Author contributions: P.S., S.M.C., S.M.A., A.C., F.Y.L, D.B., and K.N.C. designed research; ical regions (1–5). Consequently, there is a critical clinical need for P.S., M.J.H., J.B., T.S., R.D., and E.W. performed research; T.-C.T., D.T.G., F.Y.L., and D.B. contributed new reagents/analytic tools; P.S., M.J.H., M.G.A., J.B., L.Z., S.M.B., E.W., and development of more effective therapies for CM that will enhance K.N.C. analyzed data; and P.S., M.J.H., D.B., and K.N.C. wrote the paper. the protective effects of antimalarial drugs. The authors declare no conflict of interest. The cerebral processes contributing to the pathophysiology This article is a PNAS Direct Submission. of CM and those that undermine recovery from the syndrome Published under the PNAS license. after antimalarial drug treatment are poorly understood (1, 6–8). Data deposition: The sequence reported in this paper has been deposited in the ArrayExpress However, there is a growing consensus that targeting the host database (accession no. E-MTAB-6474). proinflammatory immune response to infection may be an effec- 1M.J.H., M.G.A., and J.B. contributed equally to this work. tive strategy to enhance the antimalarial drug treatment success 2D.B. and K.N.C. contributed equally to this work. of CM (7, 8). Indeed, serological and/or cerebral spinal fluid 3To whom correspondence may be addressed. Email: [email protected] or concentrations of proinflammatory cytokines and chemokines, [email protected]. α β γ including TNF ,IL6,IL1 ,IFN-, and CXCL10, frequently cor- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. relate with the development of CM and, in some cases, the se- 1073/pnas.1801737115/-/DCSupplemental. verity of CM (7, 8). Proinflammatory processes may disrupt CM Published online June 28, 2018. 7404–7409 | PNAS | July 10, 2018 | vol. 115 | no. 28 www.pnas.org/cgi/doi/10.1073/pnas.1801737115 Downloaded by guest on September 30, 2021 IL33 as a key regulator of cerebral inflammatory pathways dur- Infecon No treatment (Veh) Veh Veh A AC D G ing fatal ECM and in the acute period after antimalarial drug 30 ** 1.0 10 treatment. Injection of IL33 along with antimalarial drugs sig- 20 s 0.5 nificantly improved the recovery of mice with established ECM, 5 *** AC 10 AC Parasites / field potentially through reduction of NLRP3-dependent inflamma- Haemorrhage / field Parasitemia (%) 0 0.0 AC some activation. Consistent with this, direct inhibition of the 0 Veh AC Veh NLRP3 inflammasome using the specific inhibitor MCC950 d7 d7 100 B Veh Veh phenocopied the protective capacity of IL33 in improving re- 80 *** E H 3 ** 3 ** covery from ECM. Overall, these data indicate that pharmaco- 60 – 40 2 2 s logical strategies targeting the IL33 NLRP3 axis could potentially Survival (%) 20 be beneficial for the treatment of CM. 0 AC 1 AC 1 Occlusion / field C 0 Axonal injury / field 0 25 # Results Veh AC Veh AC 20 d7 d7 Antimalarial Drugs Promote Suboptimal Recovery from Established 15 ECM Veh Veh ECM. To study the recovery from established malaria-induced 10 * F I 5 3 *** 2.5 ** & Behaviour Scale & Behaviour cerebral pathology, we adapted the conventional Pb ANKA Rapid Murine Coma 0 2.0 024681012143060 2 1.5 ECM model (10) to recapitulate the clinical settings associated Days post infecon 1.0 AC 1 AC with the treatment of CM. C57BL/6 mice infected with Pb 0.5 Myelinopathy / field ANKA were treated daily with the antimalarial drugs artesunate Oedema score / field 0 0.0 Veh AC Veh AC [the front line drug for treatment of severe malaria (2)] and d7 d7 chloroquine (as a representative quinine compound), both at 30 mg/kg, or vehicle alone. Treatment began at the onset of neu- Fig. 1. Antimalarial drug treatment promotes suboptimal recovery from rological dysfunction, as defined by a rapid murine coma and ECM. Mice were infected with Pb ANKA GFP and treated with artesunate behavior scale (RMCBS) score of ≤15 (11), on day 6 post in- and chloroquine (AC) or vehicle (Veh) at the onset of ECM. (A) Peripheral fection (d6) (SI Appendix,Fig.S1). parasitemia, (B) survival curves, and (C) RMCBS scores of mice after infection (d0) and drug treatment (gray box). (D–I) Brains were examined 16–24 h Peripheral parasitemia developed exponentially before rapidly + after treatment (d7) for (D)GFP parasites (green), costained with lectin reducing upon antimalarial drug treatment (Fig. 1A). Despite (red) and DAPI (blue); (E) erythrocyte-congested vessels indicative of he- their potent parasiticidal activity, administration of antimalarial mostasis (H&E); (F) extravascular IgG indicative of vasogenic edema (DAB drugs [artesunate and chloroquine (AC)] failed to prevent counterstained with hematoxylin); (G) hemorrhage (H&E); (H) β-APP accu- mortality in ∼25% of mice (Fig.
Recommended publications
  • Serpinb1 Controls Encephalitogenic T Helper Cells in Neuroinflammation
    SerpinB1 controls encephalitogenic T helper cells in neuroinflammation Lifei Houa,b,1,2, Deepak A. Raoc,d, Koichi Yukie,f, Jessica Cooleya, Lauren A. Hendersonb,g, A. Helena Jonssonc,d, Dion Kaisermanh, Mark P. Gormanb,i, Peter A. Nigrovicc,d,g, Phillip I. Birdh, Burkhard Becherj, and Eileen Remold-O’Donnella,b,k,2 aThe Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115; bDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115; cDivision of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115; dDepartment of Medicine, Harvard Medical School, Boston, MA 02115; eDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115; fDepartment of Anesthesiology, Harvard Medical School, Boston, MA 02115; gDivision of Immunology, Boston Children’s Hospital, Boston, MA 02115; hDepartment of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia; iDepartment of Neurology, Boston Children’s Hospital, Boston, MA 02115; jInflammation Unit, Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland; and kDepartment of Hematology/Oncology, Harvard Medical School, Boston, MA 02115 Edited by Jean Laurent-Casanova, Rockefeller University, New York, NY, and approved August 27, 2019 (received for review April 5, 2019) SerpinB1, a protease inhibitor and neutrophil survival factor, was flammatory tissue injury and neutrophil death, and in naïve mice, recently linked with IL-17–expressing T cells. Here, we show that preserves the bone marrow reserve of mature neutrophils by serpinB1 (Sb1) is dramatically inducedinasubsetofeffector restricting spontaneous cell death mediated by the granule serine CD4 cells in experimental autoimmune encephalomyelitis (EAE).
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors
    RESEARCH ARTICLE Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors Jeroen F. Vermeulen1, Wim van Hecke1, Wim G. M. Spliet1, José Villacorta Hidalgo3, Paul Fisch3, Roel Broekhuizen1, Niels Bovenschen1,2* 1 Department of Pathology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands, 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands, 3 Institute of Pathology, University Medical Center Freiburg, 79106, Freiburg, Germany * [email protected] Abstract Background OPEN ACCESS Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant Citation: Vermeulen JF, van Hecke W, Spliet WGM, primary brain tumors that occur in young infants. Using current standard therapy, up to 80% Villacorta Hidalgo J, Fisch P, Broekhuizen R, et al. of the children still dies from recurrent disease. Cellular immunotherapy might be key to (2016) Pediatric Primitive Neuroectodermal Tumors improve overall survival. To achieve efficient killing of tumor cells, however, immunotherapy of the Central Nervous System Differentially Express Granzyme Inhibitors. PLoS ONE 11(3): e0151465. has to overcome cancer-associated strategies to evade the cytotoxic immune response. doi:10.1371/journal.pone.0151465 Whether CNS-PNETs can evade the immune response remains unknown. Editor: Javier S Castresana, University of Navarra, SPAIN Methods Received: September 3, 2015 We examined by immunohistochemistry the immune response and immune evasion strate- Accepted: February 29, 2016 gies in pediatric CNS-PNETs. Published: March 10, 2016 Copyright: © 2016 Vermeulen et al. This is an open Results access article distributed under the terms of the Creative Commons Attribution License, which permits Here, we show that CD4+, CD8+, γδ-T-cells, and Tregs can infiltrate pediatric CNS-PNETs, unrestricted use, distribution, and reproduction in any although the activation status of cytotoxic cells is variable.
    [Show full text]
  • Differential Gene Expression of Serine Protease Inhibitors in Bovine
    Hayashi et al. Reproductive Biology and Endocrinology 2011, 9:72 http://www.rbej.com/content/9/1/72 RESEARCH Open Access Differential gene expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in follicular growth and atresia Ken-Go Hayashi, Koichi Ushizawa, Misa Hosoe and Toru Takahashi* Abstract Background: SERPINs (serine protease inhibitors) regulate proteases involving fibrinolysis, coagulation, inflammation, cell mobility, cellular differentiation and apoptosis. This study aimed to investigate differentially expressed genes of members of the SERPIN superfamily between healthy and atretic follicles using a combination of microarray and quantitative real-time PCR (QPCR) analysis. In addition, we further determined mRNA and protein localization of identified SERPINs in estradiol (E2)-active and E2-inactive follicles by in situ hybridization and immunohistochemistry. Methods: We performed microarray analysis of healthy (10.7 +/- 0.7 mm) and atretic (7.8 +/- 0.2 mm) follicles using a custom-made bovine oligonucleotide microarray to screen differentially expressed genes encoding SERPIN superfamily members between groups. The expression profiles of six identified SERPIN genes were further confirmed by QPCR analysis. In addition, mRNA and protein localization of four SERPINs was investigated in E2- active and E2-inactive follicles using in situ hybridization and immunohistochemistry. Results: We have identified 11 SERPIN genes expressed in healthy and atretic follicles by microarray analysis. QPCR analysis confirmed that mRNA expression of four SERPINs (SERPINA5, SERPINB6, SERPINE2 and SERPINF2) was greater in healthy than in atretic follicles, while two SERPINs (SERPINE1 and SERPING1) had greater expression in atretic than in healthy follicles. In situ hybridization showed that SERPINA5, SERPINB6 and SERPINF2 mRNA were localized in GCs of E2-active follicles and weakly expressed in GCs of E2-inactive follicles.
    [Show full text]
  • Characterisation of Serpinb2 As a Stress Response Modulator
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2015 Characterisation of SerpinB2 as a stress response modulator Jodi Anne Lee University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Lee, Jodi Anne, Characterisation of SerpinB2 as a stress response modulator, Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2015. https://ro.uow.edu.au/theses/4538 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Adaptive Evolution and Divergence of SERPINB3: a Young Duplicate in Great Apes
    Adaptive Evolution and Divergence of SERPINB3: A Young Duplicate in Great Apes Sı´lvia Gomes1*, Patrı´cia I. Marques1,2, Rune Matthiesen3, Susana Seixas1* 1 Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, 2 Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal, 3 National Health Institute Doutor Ricardo Jorge (INSA), Lisboa, Portugal Abstract A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (,30 Mya) and the emergence of SERPINB3 in Homininae (,9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1.A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents.
    [Show full text]
  • Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-Type Palmoplantar Keratosis
    REPORT Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-type Palmoplantar Keratosis Akiharu Kubo,1,2,3,* Aiko Shiohama,1,4 Takashi Sasaki,1,2,3 Kazuhiko Nakabayashi,5 Hiroshi Kawasaki,1 Toru Atsugi,1,6 Showbu Sato,1 Atsushi Shimizu,7 Shuji Mikami,8 Hideaki Tanizaki,9 Masaki Uchiyama,10 Tatsuo Maeda,10 Taisuke Ito,11 Jun-ichi Sakabe,11 Toshio Heike,12 Torayuki Okuyama,13 Rika Kosaki,14 Kenjiro Kosaki,15 Jun Kudoh,16 Kenichiro Hata,5 Akihiro Umezawa,17 Yoshiki Tokura,11 Akira Ishiko,18 Hironori Niizeki,19 Kenji Kabashima,9 Yoshihiko Mitsuhashi,10 and Masayuki Amagai1,2,4 ‘‘Nagashima-type’’ palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major caus- ative mutation of c.796C>T (p.Arg266*) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin.
    [Show full text]
  • Serpins—From Trap to Treatment
    MINI REVIEW published: 12 February 2019 doi: 10.3389/fmed.2019.00025 SERPINs—From Trap to Treatment Wariya Sanrattana, Coen Maas and Steven de Maat* Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands Excessive enzyme activity often has pathological consequences. This for example is the case in thrombosis and hereditary angioedema, where serine proteases of the coagulation system and kallikrein-kinin system are excessively active. Serine proteases are controlled by SERPINs (serine protease inhibitors). We here describe the basic biochemical mechanisms behind SERPIN activity and identify key determinants that influence their function. We explore the clinical phenotypes of several SERPIN deficiencies and review studies where SERPINs are being used beyond replacement therapy. Excitingly, rare human SERPIN mutations have led us and others to believe that it is possible to refine SERPINs toward desired behavior for the treatment of enzyme-driven pathology. Keywords: SERPIN (serine proteinase inhibitor), protein engineering, bradykinin (BK), hemostasis, therapy Edited by: Marvin T. Nieman, Case Western Reserve University, United States INTRODUCTION Reviewed by: Serine proteases are the “workhorses” of the human body. This enzyme family is conserved Daniel A. Lawrence, throughout evolution. There are 1,121 putative proteases in the human body, and about 180 of University of Michigan, United States Thomas Renne, these are serine proteases (1, 2). They are involved in diverse physiological processes, ranging from University Medical Center blood coagulation, fibrinolysis, and inflammation to immunity (Figure 1A). The activity of serine Hamburg-Eppendorf, Germany proteases is amongst others regulated by a dedicated class of inhibitory proteins called SERPINs Paulo Antonio De Souza Mourão, (serine protease inhibitors).
    [Show full text]
  • Suppression of the Invasion and Migration of Cancer Cells by SERPINB Family Genes and Their Derived Peptides
    238 ONCOLOGY REPORTS 27: 238-245, 2012 Suppression of the invasion and migration of cancer cells by SERPINB family genes and their derived peptides RUEY-HWANG CHOU1-4, HUI-CHIN WEN1,7, WEI-GUANG LIANG1,5, SHENG-CHIEH LIN1,5, HSIAO-WEI YUAN1, CHENG-WEN WU1,5,6 and WUN-SHAING WAYNE CHANG1 1National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053; 2Center for Molecular Medicine, China Medical University Hospital, Taichung 40402; 3China Medical University, Taichung 40402; 4Department of Biotechnology, Asia University, Taichung 41354; 5College of Life Science, National Tsing Hua University, Hsinchu 30013; 6Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, Taiwan, R.O.C. Received June 28, 2011; Accepted August 17, 2011 DOI: 10.3892/or.2011.1497 Abstract. Apart from SERPINB2 and SERPINB5, the roles SERPINB RCL-peptides may provide a reasonable strategy of the remaining 13 members of the human SERPINB family against lethal cancer metastasis. in cancer metastasis are still unknown. In the present study, we demonstrated that most of these genes are differentially Introduction expressed in tumor tissues compared to matched normal tissues from lung or breast cancer patients. Overexpression of Cancer metastasis is the leading cause of morbidity and each SERPINB gene effectively suppressed the invasiveness mortality in cancer patients. It is a highly complex process, and motility of malignant cancer cells. Among all of the genes, including cell detachment, migration, invasion, circulation in the SERPINB1, SERPINB5 and SERPINB7 genes were more blood vessels, adhesion, colonization at other sites and forma- potent, and the inhibitory effect was further enhanced by tion of secondary tumors (1).
    [Show full text]
  • Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues.
    [Show full text]
  • TITLE Loss-Of-Function Mutations in SERPINB8
    TITLE Loss-of-function mutations in SERPINB8 linked to exfoliative ichthyosis with impaired mechanical stability of intercellular adhesions AUTHOR LIST Manuela Pigors,1 Ofer Sarig,2 Lisa Heinz,3 Vincent Plagnol,4 Judith Fischer,3 Janan Mohamad,2 Natalia Malchin,2 Shefali Rajpopat,1 Monia Kharfi,5 Giles G. Lestringant,6 Eli Sprecher,2 David P. Kelsell,1,7,* and Diana C. Blaydon1,7,* AFFILIATIONS 1Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom 2Department of Dermatology, Tel Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel 3Institute of Human Genetics, University Medical Center Freiburg, 79106 Freiburg, Germany 4University College London Genetics Institute, London WC1E 6BT, United Kingdom 5Department of Dermatology, Charles Nicolle Hospital, 1006 Tunis, Tunisia 6Consultant Dermatologist (retired), British Ministry of Defence, London SW1A 2HB, United Kingdom. 7These authors contributed equally to this work and are joint senior authors *CORRESPONDENCE [email protected] [email protected] 1 ABSTRACT SERPINS comprise a large and functionally diverse family of serine protease inhibi- tors. Here, we report three unrelated families with loss-of-function mutations in SER- PINB8 in association with an autosomal recessive form of exfoliative ichthyosis. Whole exome sequencing of affected individuals from a consanguineous Tunisian family and a large Israeli family revealed a homozygous frameshift mutation, c.947delA; p.Lys316Serfs*90, and a nonsense mutation, c.850C>T, p.Arg284*, re- spectively. These two mutations are located in the last exon of SERPINB8 and, hence, would not be expected to lead to nonsense-mediated decay of the mRNA, nonetheless, both mutations are predicted to lead to loss of the reactive site loop of SERPINB8, which is crucial for forming the SERPINB8-protease complex.
    [Show full text]
  • Downloaded from the Broad Insti- Chromosomal Duplications Generated the Gene Clusters at Tute
    BMC Genomics BioMed Central Research article Open Access Analysis of vertebrate genomes suggests a new model for clade B serpin evolution Dion Kaiserman and Phillip I Bird* Address: Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia Email: Dion Kaiserman - [email protected]; Phillip I Bird* - [email protected] * Corresponding author Published: 23 November 2005 Received: 16 September 2005 Accepted: 23 November 2005 BMC Genomics 2005, 6:167 doi:10.1186/1471-2164-6-167 This article is available from: http://www.biomedcentral.com/1471-2164/6/167 © 2005 Kaiserman and Bird; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The human genome contains 13 clade B serpin genes at two loci, 6p25 and 18q21. The three genes at 6p25 all conform to a 7-exon gene structure with conserved intron positioning and phasing, however, at 18q21 there are two 7-exon genes and eight genes with an additional exon yielding an 8-exon structure. Currently, it is not known how these two loci evolved, nor which gene structure arose first – did the 8-exon genes gain an exon, or did the 7-exon genes lose one? Here we use the genomes of diverse vertebrate species to plot the emergence of clade B serpin genes and to identify the point at which the two genomic structures arose.
    [Show full text]