Phenotypic Plasticity in the Interactions and Evolution of Species Anurag A

Total Page:16

File Type:pdf, Size:1020Kb

Phenotypic Plasticity in the Interactions and Evolution of Species Anurag A S C I E N C E ’ S C O M P A S S ● R E V I E W R E V I E W : E C O L O G Y Phenotypic Plasticity in the Interactions and Evolution of Species Anurag A. Agrawal species represents an interaction norm where When individuals of two species interact, they can adjust their phenotypes in response the response of one species to the other cre- to their respective partner, be they antagonists or mutualists. The reciprocal pheno- ates the environment to which the other spe- typic change between individuals of interacting species can reflect an evolutionary cies may then respond (Fig. 3). The current response to spatial and temporal variation in species interactions and ecologically sign, strength, and variability in the species result in the structuring of food chains. The evolution of adaptive phenotypic interaction then depends on the past recipro- plasticity has led to the success of organisms in novel habitats, and potentially cal responses between the individuals. In this contributes to genetic differentiation and speciation. Taken together, phenotypic simplified view, spatial aspects of the biotic responses in species interactions represent modifications that can lead to reciprocal and abiotic environment are assumed to be change in ecological time, altered community patterns, and expanded evolutionary constant. The decomposition of the environ- potential of species. mental component of the interaction norm into temporal (Fig. 3) and spatial aspects allows for a more detailed analysis of varia- henotypic plasticity is the ability of an Reciprocal phenotypic change in spe- tion in species interactions. organism to express different pheno- cies interactions. The intersection between Reciprocal phenotypic change in ecologi- Ptypes depending on the biotic or abiotic species interactions and phenotypic plasticity cal time may be (i) a primary determinant of environment (Fig. 1). Single genotypes can has generated considerable interest among an organism’s phenotype in nature; (ii) the change their chemistry, physiology, develop- evolutionary ecologists (Table 1). The study result of long-term evolution where the envi- ment, morphology, or behavior or in response of phenotypic responses of one organism to ronment (i.e., the species interaction) has to environmental cues. R. A. Fisher and other another is by definition an investigation of a been variable; and (iii) a stabilizing factor in 20th century evolutionary biologists lacked species interaction. Yet, biologists have al- mutualistic interactions. A signature of recip- explanations for phenotypic plasticity (1). most entirely focused on plasticity in species rocal phenotypic change is the escalation of Evolutionary biologists have been interested interactions as one-sided events: What is the phenotypes between individuals of two spe- in studying the genetic basis of phenotypes, effect of variation in species X on the pheno- cies over an extended bout of interactions. and early work was focused on traits pre- type of species Y? In nature, however, it is This can be a directional change in the phe- sumed to be unaffected by the environment. quite likely that interacting individuals are notype of partners, where exposure to certain Environmentally affected phenotypes were continually responding to their interaction cues activates genes in a dose-dependent considered of lesser importance because of partners in a reciprocal fashion over ecolog- manner (Fig. 3). For example, in a mutualis- their apparent lack of a genetic basis. The ical time (Fig. 2). Reciprocal interaction sim- tic interaction, individuals may increase re- modern view of phenotypic plasticity rejects ply implies a back-and-forth response in wards in response to increased services from this notion because phenotypic plasticity of- terms of phenotypic change between individ- a partner, and this back-and-forth changing of ten has a genetic basis. Now, many ecologists uals, and does not imply symmetry in the phenotypes can be a continuous or iterative and evolutionary biologists have embraced strength of responses or effects of one partner process. However, reciprocal phenotypic the idea that under many circumstances such on the other. Many antagonistic or mutualis- change does not have to be directional (5–7). phenotypic plasticity can be adaptive (2). tic interactions, including those that are not Here again, there is an analogy to coevolu- This hypothesis parallels Lamarck’s First behavioral, may involve reciprocal phenotyp- tionary dynamics, where two possible out- Law proposed in Philosophie zoologique in ic changes in ecological time. As an analog, comes are escalating (directional) arms races 1809 (3), which stated that organisms accli- studies of coevolution have long attempted to or polymorphisms that are stable or fluctuat- mate to their environment to improve perfor- study the reciprocal evolutionary change in ing in space or time. The latter case predicts mance. Of course, Lamarck is largely dis- interacting species. high levels of genetic and phenotypic varia- credited by his Second Law, which suggested Thompson (4) proposed a similar exami- tion between populations of the interacting that these adjustments to the environment nation of phenotypic plasticity in species in- species because of variation in the cost- were heritable. The modern view of plasticity teractions termed an interaction norm. An benefit ratio of a particular adaptation to can be generalized to the statement that phe- interaction norm is expressed as a genotype- the partner (8). Nondirectional phenotypic notypic plasticity evolves to maximize fitness by-genotype-by-environment interaction. In changes in ecological time may similarly in variable environments (the adaptive plas- other words, the phenotype of an individual result in variable phenotypes between dif- ticity hypothesis) (2). Here, I take the adap- or the sign and strength of an interaction ferent pairs of interacting species. Recent tive plasticity hypothesis as a starting point between species is determined by the geno- advances in the understanding of transpos- for evaluating ongoing and future research types of interacting individuals and the envi- able elements suggest that stress-induced directions in the ecology and evolution of ronmental conditions in which they occur. I retrotransposons may be a mechanism for species interactions. propose a refinement of the interaction norm nondirectional change. Defensive respons- concept that distinguishes environmental ef- es in plants and animals result in increased fects that are generated by spatial versus tem- transpositional activity that may result in Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada. E- poral variation. Reciprocal phenotypic immunity to parasites (6, 7). mail: [email protected] change between individuals of interacting Although studies have not been conducted www.sciencemag.org SCIENCE VOL 294 12 OCTOBER 2001 321 S C I E N C E ’ S C O M P A S S to test the specific hypothesis of reciprocal quently produce tubules. After additional re- strength of predaceous crabs: crabs eating phenotypic change in ecological time, several ciprocal signaling, rhizobia differentiate into mussels without shells grew smaller and examples suggest that it is common. Interac- bacteroids that fix atmospheric nitrogen. Sub- weaker claws than crabs eating intact mussels tions between probable mutualists such as sequent reciprocity dictates the level to which with shells. Conversely, mussels respond to leguminous plants (Fabaceae) and nitrogen- legumes and rhizobia cooperate and ex- cues from predators, including crabs, by in- fixing bacteria (rhizobia) demonstrate recip- change resources (10). ducing increased shell thickness, abductor rocal phenotypic change (9). Bacteria near Reciprocal phenotypic change has also muscle strength, and byssal threads (12, 13). roots start by producing lipo-oligosaccharides been indicated in largely antagonistic interac- In the relationship between plants and herbi- (termed Nod factors). Plants then distort root tions. Smith and Palmer (11) elegantly dem- vores, plants may induce defenses that are hairs that curl around the bacteria and subse- onstrated plasticity in morphology and claw dependent on the density of attackers, and herbivores may induce counterdefenses that Fig. 1. Two individuals are dependent on the concentrations of plant of a single clone of the defenses consumed (14–17) (Fig. 4). The Asian and African wa- continuous range of phenotypes induced by ter flea, Daphnia lum- each partner exemplifies a hallmark require- holtzi. The individual ment of the ecological arms race hypothesis on the left was ex- posed to chemical because it allows for escalating phenotypic cues from predaceous change. If these responses are not continuous, fish (induced); the in- then “arms races” in ecological time are less dividual on the right likely. If reciprocal phenotypic change is the was not (control). The result of adaptive plasticity in both partners, sharp helmet and ex- then it is predicted that coevolution may re- tended tail spine of the induced morph sult in phenotypic plasticity, as opposed to, or protect D. lumholtzi in addition to fixed adaptations. from fish predators. Phenotypic changes in species interac- The uninduced form tions typically revert back to the original was formerly de- phenotypic state after each extended bout of scribed as a different interactions (e.g., each year). However, four species (D. monacha Brehm 1912). Green possibilities
Recommended publications
  • How Morphological Development Can Guide Evolution Sam Kriegman1,*, Nick Cheney1, and Josh Bongard1
    How morphological development can guide evolution Sam Kriegman1,*, Nick Cheney1, and Josh Bongard1 1University of Vermont, Department of Computer Science, Burlington, VT, USA *[email protected] ABSTRACT Organisms result from adaptive processes interacting across different time scales. One such interaction is that between development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes exposing promising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or deployment in novel environments. Introduction The shape of life changes on many different time scales. From generation to generation, populations gradually increase in complexity and relative competency. At the individual level, organisms grow from a single-celled egg and exhibit extreme postnatal change as they interact with the outside world during their lifetimes.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • The Life-Cycle of Operons
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title The Life-cycle of Operons Permalink https://escholarship.org/uc/item/0sx114h9 Authors Price, Morgan N. Arkin, Adam P. Alm, Eric J. Publication Date 2005-11-18 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Title: The Life-cycle of Operons Authors: Morgan N. Price, Adam P. Arkin, and Eric J. Alm Author a±liation: Lawrence Berkeley Lab, Berkeley CA, USA and the Virtual Institute for Microbial Stress and Survival. A.P.A. is also a±liated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric Alm, [email protected], phone 510-486-6899, fax 510-486-6219, address Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 977-152, Berkeley, CA 94720 Abstract: Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identi¯ed the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our ¯ndings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period.
    [Show full text]
  • Phenotypic Plasticity and Plant Adaptation
    Acta Bot. Neerl. 44(4), December 1995, p. 363-383 * Phenotypic plasticity and plant adaptation S.E. Sultan Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA SUMMARY This paper focuses on phenotypic plasticity as a major mode of adaptation in plants. A methodological critique examines difficulties in studying plasticity, including the conceptually critical distinction between functionally adaptive and inevitable aspects of response. It is that argued plasticity studies depend critically upon the genotypic the and factor sample, choice of environmental factors states, and the definitionof phenotypic traits. Examples are drawn from recent studies to showing adaptive response by genotypes physical aspects of the environment, as well as to biotic factors such as neighbour density and the presence of bacterial symbionts. Alterations of offspring traits by parental plants of Polygonum persicaria are discussed as a cross-generational aspect of plastic response to environment. Finally, individual plasticity and local ecotypes are alternative bases of examined as species ecological breadth, and these alternatives methodological problems in distinguishing are discussed. Key-words: adaptation, maternal effects, norm of reaction, phenotypic plasticity, Polygonum, species distribution. INTRODUCTION Natural environments inevitably vary, both spatially and temporally. According to the classic neo-Darwinian model, organisms accommodate that variation by means of natural selection, which through evolutionary time matches specific genotypes and environments. By assuming a simple Mendelian relationship of genotype to phenotype, this powerful model provides a genetic mechanism for adaptive phenotypic changes in In this I wish to focus second mode of populations. paper on a major adaptation, one which is becoming particularly well understood in plants: the capacity of a single genotype to produce different, functionally appropriate phenotypes in different This environments, or adaptive phenotypic plasticity.
    [Show full text]
  • GENE REGULATION Differences Between Prokaryotes & Eukaryotes
    GENE REGULATION Differences between prokaryotes & eukaryotes Gene function Description of Prokaryotic Chromosome and E.coli Review Differences between Prokaryotic & Eukaryotic Chromosomes Four differences Eukaryotic Chromosomes Form Length in single human chromosome Length in single diploid cell Proteins beside histones Proportion of DNA that codes for protein in prokaryotes eukaryotes humans Regulation of Gene Expression in Prokaryotes Terms promoter structural gene operator operon regulator repressor corepressor inducer The lac operon - Background E.coli behavior presence of lactose and absence of lactose behavior of mutants outcome of mutants The Lac operon Regulates production of b-galactosidase http://www.sumanasinc.com/webcontent/animations/content/lacoperon.html The trp operon Regulates the production of the enzyme for tryptophan synthesis http://bcs.whfreeman.com/thelifewire/content/chp13/1302002.html General Summary During transcription, RNA remains briefly bound to the DNA template Structural genes coding for polypeptides with related functions often occur in sequence Two kinds of regulatory control positive & negative General Summary Regulatory efficiency is increased because mRNA is translated into protein immediately and broken down rapidly. 75 different operons comprising 260 structural genes in E.coli Gene Regulation in Eukaryotes some regulation occurs because as little as one % of DNA is expressed Gene Expression and Differentiation Characteristic proteins are produced at different stages of differentiation producing cells with their own characteristic structure and function. Therefore not all genes are expressed at the same time As differentiation proceeds, some genes are permanently “turned” off. Example - different types of hemoglobin are produced during development and in adults. DNA is expressed at a precise time and sequence in time.
    [Show full text]
  • I = Chpt 15. Positive and Negative Transcriptional Control at Lac BMB
    BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac B M B 400 Part Four: Gene Regulation Section I = Chapter 15 POSITIVE AND NEGATIVE CONTROL SHOWN BY THE lac OPERON OF E. COLI A. Definitions and general comments 1. Operons An operon is a cluster of coordinately regulated genes. It includes structural genes (generally encoding enzymes), regulatory genes (encoding, e.g. activators or repressors) and regulatory sites (such as promoters and operators). 2. Negative versus positive control a. The type of control is defined by the response of the operon when no regulatory protein is present. b. In the case of negative control, the genes in the operon are expressed unless they are switched off by a repressor protein. Thus the operon will be turned on constitutively (the genes will be expressed) when the repressor in inactivated. c. In the case of positive control, the genes are expressed only when an active regulator protein, e.g. an activator, is present. Thus the operon will be turned off when the positive regulatory protein is absent or inactivated. Table 4.1.1. Positive vs. negative control BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac 3. Catabolic versus biosynthetic operons a. Catabolic pathways catalyze the breakdown of nutrients (the substrate for the pathway) to generate energy, or more precisely ATP, the energy currency of the cell. In the absence of the substrate, there is no reason for the catabolic enzymes to be present, and the operon encoding them is repressed. In the presence of the substrate, when the enzymes are needed, the operon is induced or de-repressed.
    [Show full text]
  • Escherichia Coli (Gene Fusion/Attenuator/Terminator/RNA Polymerase/Ribosomal Proteins) GERARD BARRY, CATHERINE L
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 10, pp. 4922-4926, October 1979 Biochemistry Control features within the rplJL-rpoBC transcription unit of Escherichia coli (gene fusion/attenuator/terminator/RNA polymerase/ribosomal proteins) GERARD BARRY, CATHERINE L. SQUIRES, AND CRAIG SQUIRES Department of Biological Sciences, Columbia University, New York, New York 10027 Communicated by Cyrus Levinthal, July 2, 1979 ABSTRACT Gene fusions constructed in vitro have been regulation could occur (4-7). Yet under certain conditions, used to examine transcription regulatory signals from the operon coordinate of the RNA which encodes ribosomal proteins L10 and L7/12 and the RNA expression polymerase subunits and polymerase P and #I subunits (the rplJL-rpoBC operon). Por- ribosomal proteins is not observed. This is especially true of the tions of this operon, which were obtained by in vitro deletions, rplJL-rpoBC transcription unit which encodes the ribosomal have been placed between the ara promoter and the lacZgene proteins L10 and L7/12 and the RNA polymerase subunits 13 in the gene-fusion plasmid pMC81 developed by M. Casadaban and 13'. For example, only the ribosomal proteins are modulated and S. Cohen. The effect of the inserted DNA segment on the by the stringent regulation system (8, 9) whereas a transient expression of the IacZ gene (in the presence and absence of arabinose) permits the localization of regulatory signals to dis- stimulatory effect of rifampicin is specific for the RNA poly- crete regions of the rpIJL-rpoBC operon. An element that re- merase subunits (10, 11). In addition, different amounts of duces the level of distal gene expression to one-sixth is located mRNA hybridize to the rpl and rpo regions of the rplJL-rpoBC on a fragment which spans the rplL-rpoB intercistronic region.
    [Show full text]
  • Phenotypic Plasticity of Feeding Structures in Marine Invertebrate Larvae
    CHAPTER 8 Phenotypic Plasticity of Feeding Structures in Marine Invertebrate Larvae Justin S. McAlister and Benjamin G. Miner Researchers have worked over the last thirty years Scheiner (2004). Here we summarize some of the to examine and understand phenotypic plasticity main concepts in order to facilitate discussion of in larvae of marine invertebrates. These studies plasticity in marine invertebrate larvae later in the range from documenting the association between chapter. Phenotypic plasticity is defined as the abil- algal food availability and larval morphology in ity of a genotype to produce different phenotypes different species to examining the ecological and (developmental, physiological, morphological, be- evolutionary implications of the plastic response. havioral, or life history traits) in response to differ- However, investigators have used disparate sys- ent biotic or abiotic environmental factors. Plasticity tems (genera and species of echinoid echinoderms can be adaptive, maladaptive, or effectively neutral. mostly, but also other taxa), employed various When an organism possesses plasticity that confers rearing and measuring techniques and levels of a fitness advantage, then plasticity is considered genetic replication, and relied on different statisti- adaptive. Researchers have focused on examples in cal methodologies for data analysis. They have also which there is evidence that plasticity is adaptive, obtained results ranging from non-plastic to plastic, likely because of the evolutionary and ecological and reached different conclusions about the func- consequences of phenotypes that improve an organ- tional, ecological, and evolutionary roles of pheno- ism’s fitness. However, phenotypic plasticity can be typic plasticity in marine larvae. Our goals with this non-adaptive and still have important ecological chapter are twofold: to review the literature in order consequences (Miner et al., 2005).
    [Show full text]
  • The LIM and POU Homeobox Genes Ttx-3 and Unc-86 Act As Terminal
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 422-435 doi:10.1242/dev.099721 RESEARCH ARTICLE The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types Feifan Zhang1, Abhishek Bhattacharya1, Jessica C. Nelson2, Namiko Abe1, Patricia Gordon1, Carla Lloret-Fernandez3, Miren Maicas3, Nuria Flames1,3, Richard S. Mann1, Daniel A. Colón-Ramos2 and Oliver Hobert1,4,* ABSTRACT factor initiates and maintains the terminal differentiation program of Transcription factors that drive neuron type-specific terminal dopaminergic neurons in the midbrain (Smidt and Burbach, 2009), differentiation programs in the developing nervous system are often whereas the Pet1 transcription factor initiates and maintains the expressed in several distinct neuronal cell types, but to what extent terminal differentiation program of serotonergic neurons (Liu et al., they have similar or distinct activities in individual neuronal cell types 2010). However, few neuronal transcription factors are expressed is generally not well explored. We investigate this problem using, as exclusively in only one specific neuronal cell type (Gray et al., 2004; a starting point, the C. elegans LIM homeodomain transcription factor Lein et al., 2007). For example, in addition to being expressed in ttx-3, which acts as a terminal selector to drive the terminal midbrain dopaminergic neurons, Nurr1 is expressed in other non- differentiation program of the cholinergic AIY interneuron class. Using dopaminergic neuronal cell types in which its function is not well a panel of different terminal differentiation markers, including understood, such as the adult olfactory bulb, specific cortical areas neurotransmitter synthesizing enzymes, neurotransmitter receptors and the hippocampus (Zetterström et al., 1996).
    [Show full text]
  • Lamarckian Mechanisms As Developmental Bias and Their Darwinian Base – Descriptive Versus Explanatory Biology (Full Version) Andrzej Gecow [email protected]
    Lamarckian mechanisms as developmental bias… (full v.) A.Gecow [email protected] Sep. 29, 2020 1 Lamarckian mechanisms as developmental bias and their Darwinian base – descriptive versus explanatory biology (full version) Andrzej Gecow [email protected] Abstract The article points out the main obstacles in the discussion of Lamarckian mechanisms, resulting from overly persisted beliefs, habits and understatement. The aim of the article is not to show new biological observation, but to indicate the need to change methodology. ‘Lamarckian mechanisms’ are those that create ‘non-random’ changes (in the aspect of adaptation), and even ‘resulting from instruction’, and these changes become evolutionary. It is part of ‘developmental biases’. To avoid widespread prejudices a permanent stress is needed that such ‘Lamarckian mechanisms’ are an effect of Darwinian mechanisms but this stress is not enough visible. The term ‘Lamarckism’ has two meanings unreasonably connected. The correct meaning is, that adaptive evolutionary changes can be induced by environment and next they are inherited, but typically it is understood as irrational believing that evolutionary changes are adaptive without necessity of help of Darwinian mechanisms. In this case the terms ‘Lamarckian mechanisms’ and ‘Lamarckism’ are not coherent which leads to misunderstanding. Such irrational Lamarckism has small base in Lamarck’s view, it arisen from too shallow interpretation of Lamarck. In the theme ‘inheritance of acquired characters’ a few steps to evolutionary change is indicated, which typically are omitted in the description. Old such descriptions need rebuilding in a new coherent system of notions but to create such system a theory is necessary. The Lamarckian dimension of evolution protrudes beyond the basics of Modern Synthesis however necessity to change the name of the synthesis to Extended Evolutionary Synthesis is discretionary decision.
    [Show full text]
  • The Molecular Cloning and Characterisation
    THE MOLECULAR CLONING AND CHARACTERISATION OF NORMAL AND BETA-PLUS THALASSAEMIC HUMAN' GLOBIN GENES ' \ . ' by DAVID ANTHONY WESTAWAY a thesis submitted for the degree of Doctor of Philosophy in the University of London December, 1980 Department of Biochemistry St Mary's Hospital Medical School London W2 IPG VI ABSTRACT ^thalassaemia is a human hereditary diseases characterised by decreased output of p globin chains. Human & ~rp~r andy - globin cDNA plasmids, whose identity was confirmed by sequence analysis, were used to investigate the p- globin locus in j3 -thalassaemia. No gross alteration of the globin locus is associated-' with the disease. In order to identify the mutation conferring the thai phenotype, a chromosomal p globin gene has been cloned in phage lambda. Starting material was DNA from a Turkish Cypriot compound heterozygote, with a P gene .on one chromosome and a 6p fusion gene on the other chromosome. The DNA was digested with the restriction endonuclease Hsu 1 which generates a 7.5kb fragment from the p globin gene, and a 16kb fragment from the fusion gene. The Hsu 1 cleaved DNA was enriched for the 7.5kb size fraction and ligated to the lambda cloning vector ANEM788. 160,000 recombinants were screened and a positive scoring phage isolated. Restriction analysis confirmed that this phage contained a P globin gene. The 7.5kb insert was subcloned into the plasmid pAT153 and digestion with seven restriction endonucleases gave a pattern indistinguishable from that of a normal p globin gene. Thus within the 7.5kb of DNA cloned, which includes the p globin gene plus almost 6kb of flanking DNA, there have been no insertions or deletions greater than about 100 base-pairs.
    [Show full text]
  • Review Session
    REVIEW SESSION Wednesday, September 15 5:305:30 PMPM SHANTZSHANTZ 242242 EE Gene Regulation Gene Regulation Gene expression can be turned on, turned off, turned up or turned down! For example, as test time approaches, some of you may note that stomach acid production increases dramatically…. due to regulation of the genes that control synthesis of HCl by cells within the gastric pits of the stomach lining. Gene Regulation in Prokaryotes Prokaryotes may turn genes on and off depending on metabolic demands and requirements for respective gene products. NOTE: For prokaryotes, “turning on/off” refers almost exclusively to stimulating or repressing transcription Gene Regulation in Prokaryotes Inducible/RepressibleInducible/Repressible gene products: those produced only when specific chemical substrates are present/absent. ConstitutiveConstitutive gene products: those produced continuously, regardless of chemical substrates present. Gene Regulation in Prokaryotes Regulation may be Negative: gene expression occurs unless it is shut off by a regulator molecule or Positive: gene expression only occurs when a regulator mole turns it on Operons In prokaryotes, genes that code for enzymes all related to a single metabolic process tend to be organized into clusters within the genome, called operonsoperons. An operon is usually controlled by a single regulatory unit. Regulatory Elements ciscis--actingacting elementelement: The regulatory region of the DNA that binds the molecules that influences expression of the genes in the operon. It is almost always upstream (5’) to the genes in the operon. TransTrans--actingacting elementelement: The molecule(s) that interact with the cis-element and influence expression of the genes in the operon. The lac operon The lac operon contains the genes that must be expressed if the bacteria is to use the disaccharide lactose as the primary energy source.
    [Show full text]