21 CFR Ch. I (4–1–16 Edition) § 172.515

Total Page:16

File Type:pdf, Size:1020Kb

21 CFR Ch. I (4–1–16 Edition) § 172.515 § 172.515 21 CFR Ch. I (4–1–16 Edition) [42 FR 14491, Mar. 15, 1977, as amended at 43 FR 14644, Apr. 7, 1978; 49 FR 10104, Mar. 19, 1984; 54 FR 24897, June 12, 1989; 69 FR 24511, May 4, 2004; 72 FR 10357, Mar. 8, 2007] § 172.515 Synthetic flavoring sub- Amyl heptanoate. stances and adjuvants. Amyl hexanoate. Amyl octanoate. Synthetic flavoring substances and Anisole; methoxybenzene. adjuvants may be safely used in food in Anisyl acetate. accordance with the following condi- Anisyl alcohol; p-methoxybenzyl alcohol. tions. Anisyl butyrate (a) They are used in the minimum Anisyl formate. Anisyl phenylacetate. quantity required to produce their in- Anisyl propionate. tended effect, and otherwise in accord- Beechwood creosote. ance with all the principles of good Benzaldehyde dimethyl acetal. manufacturing practice. Benzaldehyde glyceryl acetal; 2-phenyl-m-di- (b) They consist of one or more of the oxan-5-ol. following, used alone or in combination Benzaldehyde propylene glycol acetal; 4- with flavoring substances and adju- methyl-2-phenyl-m-dioxolane. vants generally recognized as safe in Benzenethiol; thiophenol. Benzoin; 2-hydroxy-2-phenylacetophenone. food, prior-sanctioned for such use, or Benzophenone; diphenylketone. regulated by an appropriate section in Benzyl acetate. this part. Benzyl acetoacetate. Benzyl alcohol. Acetal; acetaldehyde diethyl acetal. Benzyl benzoate. Acetaldehyde phenethyl propyl acetal. Benzyl butyl ether. ′ Acetanisole; 4 -methoxyacetophenone. Benzyl butyrate. Acetophenone; methyl phenyl ketone. Benzyl cinnamate. Allyl anthranilate. Benzyl 2,3–dimethylcrotonate; benzyl methyl Allyl butyrate. tiglate. Allyl cinnamate. Benzyl disulfide; dibenzyl disulfide. Allyl cyclohexaneacetate. Benzyl ethyl ether. Allyl cyclohexanebutyrate. Benzyl formate. Allyl cyclohexanehexanoate. 3-Benzyl-4-heptanone; benzyl dipropyl ke- Allyl cyclohexaneproprionate. tone. Allyl cyclohexanevalerate. Benzyl isobutyrate. Allyl disulfide. Benzyl isovalerate. Allyl 2-ethylbutyrate. Benzyl mercaptan; a-toluenethiol. Allyl hexanoate; allyl caproate. Benzyl methoxyethyl acetal; acetaldehyde Allyl a-ionone; 1-(2,6,6-trimethyl-2-cyclo-hex- benzyl b-methoxyethyl acetal. ene-1-yl)-1,6-heptadiene-3-one. Benzyl phenylacetate. Allyl isothiocyanate; mustard oil. Benzyl propionate. Allyl isovalerate. Benzyl salicylate. Allyl mercaptan; 2-propene-1-thiol. Birch tar oil. Allyl nonanoate. Borneol; d-camphanol. Allyl octanoate. Bornyl acetate. Allyl phenoxyacetate. Bornyl formate. Allyl phenylacetate. Bornyl isovalerate. Allyl propionate. Bornyl valerate. Allyl sorbate; allyl 2,4-hexadienoate. b-Bourbonene; 1,2,3,3a,3bb,4,5,6,6ab,6ba-deca- Allyl sulfide. hydro-la-isopropyl-3aa-methyl-6-meth- Allyl tiglate; allyl trans-2-methyl-2- ylene-cyclobuta [1,2:3,4] dicyclopentene. butenoate. 2-Butanol. Allyl 10-undecenoate. 2-Butanone; methyl ethyl ketone. Ammonium isovalerate. Butter acids. Ammonium sulfide. Butter esters. Amyl alcohol; pentyl alcohol. Butyl acetate. Amyl butyrate. Butyl acetoacetate. a-Amylcinnamaldehyde. Butyl alcohol; 1-butanol. a-Amylcinnamaldehyde dimethyl acetal. Butyl anthranilate. a-Amylcinnamyl acetate. Butyl butyrate. a-Amylcinnamyl alcohol. Butyl butyryllactate; lactic acid, butyl a-Amylcinnamyl formate. ester, butyrate. a-Amylcinnamyl isovalerate. a-Butylcinnamaldehyde. Amyl formate. Butyl cinnamate. 60 VerDate Sep<11>2014 08:44 Jun 03, 2016 Jkt 238072 PO 00000 Frm 00070 Fmt 8010 Sfmt 8010 Y:\SGML\238072.XXX 238072 jstallworth on DSK7TPTVN1PROD with CFR Food and Drug Administration, HHS § 172.515 Butyl 2-decenoate. Citronellyl valerate. Butyl ethyl malonate. p-Cresol. Butyl formate. Cuminaldehyde; cuminal; p-isopropyl benz- Butyl heptanoate. aldehyde. Butyl hexanoate. Cyclohexaneacetic acid. Butyl p-hydroxybenzoate. Cyclohexaneethyl acetate. Butyl isobutyrate. Cyclohexyl acetate. Butyl isovalerate. Cyclohexyl anthranilate. Butyl lactate. Cyclohexyl butyrate. Butyl laurate. Cyclohexyl cinnamate. Butyl levulinate. Cyclohexyl formate. Butyl phenylacetate. Cyclohexyl isovalerate. Butyl propionate. Cyclohexyl propionate. Butyl stearate. p-Cymene. Butyl sulfide. g-Decalactone; 4-hydroxy-decanoic acid, g- Butyl 10-undecenoate. lactone. Butyl valerate. g-Decalactone; 5-hydroxy-decanoic acid, d- Butyraldehyde. lactone. Cadinene. Decanal dimethyl acetal. Camphene; 2,2-dimethyl-3-methylene- 1-Decanol; decylic alcohol. norbornane. 2-Decenal. d-Camphor. 3-Decen-2-one; heptylidene acetone. Carvacrol; 2-p-cymenol. Decyl actate. Carvacryl ethyl ether; 2-ethoxy-p-cymene. Decyl butyrate. Carveol; p-mentha-6,8-dien-2-ol. Decyl propionate. 4-Carvomenthenol; 1-p-menthen-4-ol; 4- Dibenzyl ether. terpinenol. 4,4-Dibutyl-g-butyrolactone; 4,4-dibutyl-4-hy- cis Carvone oxide; 1,6-epoxy-p-menth-8-en-2- droxy-butyric acid, g-lactone. one. Dibutyl sebacate. Carvyl acetate. Diethyl malate. Carvyl propionate. Diethyl malonate; ethyl malonate. b-Caryophyllene. Diethyl sebacate. Caryophyllene alcohol. Diethyl succinate. Caryophyllene alcohol acetate. Diethyl tartrate. b-Caryophyllene oxide; 4-12,12-trimethyl-9- 2,5-Diethyltetrahydrofuran. methylene-5-oxatricylo [8.2.0.0 46] dode- Dihydrocarveol; 8-p-menthen-2-ol; 6-methyl- cane. 3-isopropenylcyclohexanol. Cedarwood oil alcohols. Dihydrocarvone. Cedarwood oil terpenes. Dihydrocarvyl acetate. 1,4-Cineole. m-Dimethoxybenzene. Cinnamaldehyde ethylene glycol acetal. p-Dimethoxybenzene; dimethyl hydro- Cinnamic acid. quinone. Cinnamyl acetate. 2,4-Dimethylacetophenone. Cinnamyl alcohol; 3-phenyl-2-propen-1-ol. a,a-Dimethylbenzyl isobutyrate; phenyldi- Cinnamyl benzoate. methylcarbinyl isobutyrate. Cinnamyl butyrate. 2,6-Dimethyl-5-heptenal. Cinnamyl cinnamate. 2,6-Dimethyl octanal; isodecylaldehyde. Cinnamyl formate. 3,7-Dimethyl-1-octanol; tetrahydrogeraniol. Cinnamyl isobutyrate. a,a-Dimethylphenethyl acetate; benzyl- Cinnamyl isovalerate. propyl acetate; benzyldimethylcarbinyl ac- Cinnamyl phenylacetate. etate. Cinnamyl propionate. a,a-Dimethylphenethyl alcohol; dimethyl- Citral diethyl acetal; 3,7-dimethyl-2,6-octa- benzyl carbinol. dienal diethyl acetal. a,a-Dimethylphenethyl butyrate; benzyl- Citral dimethyl acetal; 3,7-dimethyl-2,6-octa- dimethylcarbinyl butyrate. dienal dimethyl acetal. a,a-Dimethylphenethyl formate; benzyldi- Citral propylene glycol acetal. methylcarbinyl formate. Citronellal; 3,7-dimethyl-6-octenal; rhodinal. Dimethyl succinate. Citronellol; 3,7-dimethyl-6-octen-1-ol; d-cit- 1,3-Diphenyl-2-propanone; dibenzyl ketone. ronellol. delta-Dodecalactone; 5-hydroxydodecanoic Citronelloxyacetaldehyde. acid, deltalactone. Citronellyl acetate. g-Dodecalactone; 4-hydroxydodecanoic acid g- Citronellyl butyrate. lactone. Citronellyl formate. 2-Dodecenal. Citronellyl isobutyrate. Estragole. Citronellyl phenylacetate. r-Ethoxybenzaldehyde. Citronellyl propionate. Ethyl acetoacetate. 61 VerDate Sep<11>2014 08:44 Jun 03, 2016 Jkt 238072 PO 00000 Frm 00071 Fmt 8010 Sfmt 8010 Y:\SGML\238072.XXX 238072 jstallworth on DSK7TPTVN1PROD with CFR § 172.515 21 CFR Ch. I (4–1–16 Edition) Ethyl 2-acetyl-3-phenylpropionate; ethyl- Formic acid benzyl acetoacetate. (2-Furyl)-2-propanone; furyl acetone. Ethyl aconitate, mixed esters. 1-Furyl-2-propanone; furyl acetone. Ethyl acrylate. Fusel oil, refined (mixed amyl alcohols). Ethyl r-anisate. Geranyl acetoacetate; trans-3,7-dimethyl-2, 6- Ethyl anthranilate. octadien-1-yl acetoacetate. Ethyl benzoate. Geranyl acetone; 6,10-dimethyl-5,9- Ethyl benzoylacetate. undecadien-2-one. a-Ethylbenzyl butyrate; a-phenylpropyl bu- Geranyl benzoate. tyrate. Geranyl butyrate. Ethyl brassylate; tridecanedioic acid cyclic Geranyl formate. ethylene glycol diester; cyclo 1,13-ethyl- Geranyl hexanoate enedioxytridecan-1,13-dione. Geranyl isobutyrate. 2-Ethylbutyl acetate. Geranyl isovalerate. 2-Ethylbutyraldehyde. Geranyl phenylacetate. 2-Ethylbutyric acid. Geranyl propionate. Ethyl cinnamate. Glucose pentaacetate. Ethyl crotonate; trans-2-butenoic acid ethyl- Guaiacol; μ-methoxyphenol. ester. Guaiacyl acetate; μ-methoxyphenyl acetate. Ethyl cyclohexanepropionate. Guaiacyl phenylacetate. Ethyl decanoate. Guaiene; 1,4-dimethyl-7-isopropenyl-D9,10- 2-Ethylfuran. octahydroazulene. Ethyl 2-furanpropionate. Guaiol acetate; 1,4-dimethyl-7-(a-hydroxy- 4-Ethylguaiacol; 4-ethyl-2-methoxyphenol. isopropyl)-d9,10-octahydroazulene acetate. Ethyl heptanoate. g-Heptalactone; 4-hydroxyheptanoic acid, g- 2-Ethyl-2-heptenal; 2-ethyl-3-butylacrolein. lactone. Ethyl hexanoate. Heptanal; enanthaldehyde. Ethyl isobutyrate. Heptanal dimethyl acetal. Ethyl isovalerate. Heptanal 1,2-glyceryl acetal. Ethyl lactate. 2,3-Heptanedione; acetyl valeryl. Ethyl laurate. 3-Heptanol. Ethyl levulinate. 2-Heptanone; methyl amyl ketone. Ethyl maltol; 2-ethyl-3-hydroxy-4H-pyran-4- 3-Heptanone; ethyl butyl ketone. one. 4-Heptanone; dipropyl ketone. Ethyl 2-methylbutyrate. cis-4-Heptenal; cis-4-hepten-1-al. Ethyl myristate. Heptyl acetate. Ethyl nitrite. Heptyl alcohol; enanthic alcohol. Ethyl nonanoate. Heptyl butyrate. Ethyl 2-nonynoate; ethyl octyne carbonate. Heptyl cinnamate. Ethyl octanoate. Heptyl formate. Ethyl oleate. Heptyl isobutyrate. Ethyl phenylacetate. Heptyl octanoate. Ethyl 4-phenylbutyrate. 1-Hexadecanol; cetyl alcohol. Ethyl 3-phenylglycidate. w-6-Hexadecenlactone; 16-hydroxy-6- Ethyl 3-phenylpropionate; ethyl hydro- hexadecenoic acid, w-lactone; cinnamate. ambrettolide. Ethyl propionate. g-Hexalactone; 4-hydroxyhexanoic acid, g-lac- Ethyl pyruvate. tone; tonkalide. Ethyl salicylate. Hexanal; caproic aldehyde. Ethyl sorbate; ethyl 2,4-hexadienoate. 2,3-Hexanedione; acetyl butyryl. Ethyl tiglate; ethyl trans-2-methyl-2-
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • The Following Carcinogenic Essential Oils Should Not Be Used In
    Aromatherapy Undiluted- Safety and Ethics Copyright © Tony Burfield and Sylla Sheppard-Hanger (2005) [modified from a previous article “A Brief Safety Guidance on Essential Oils” written for IFA, Sept 2004]. Intro In the last 20 years aromatherapy has spread its influence to the household, toiletries and personal care areas: consumer products claiming to relax or invigorate our psyche’s have invaded our bathrooms, kitchen and living room areas. The numbers of therapists using essential oils in Europe and the USA has grown from a handful in the early 1980’s to thousands now worldwide. We have had time to add to our bank of knowledge on essential oils from reflecting on many decades of aromatherapeutic development and history, the collection of anecdotal information from practicing therapists, as well as from clinical & scientific investigations. We have also had enough time to consider the risks in employing essential oils in therapy. In the last twenty years, many more people have had accidents, been ‘burnt’, developed rashes, become allergic, and become sensitized to our beloved tools. Why is this? In this paper, we hope to shed light on this issue, clarify current safety findings, and discuss how Aromatherapists and those in the aromatherapy trade (suppliers, spas, etc.) can interpret this data for continued safe practice. After a refresher on current safety issues including carcinogenic and toxic oils, irritant and photo-toxic oils, we will look at allergens, oils without formal testing, pregnancy issues and medication interactions. We will address the increasing numbers of cases of sensitization and the effect of diluting essential oils.
    [Show full text]
  • White Birch Trees As Resource Species of Russia : Their Distribution, Ecophysiological Features, Multiple Utilizations
    Title White Birch Trees as Resource Species of Russia : Their Distribution, Ecophysiological Features, Multiple Utilizations Author(s) Zyryanova, Olga A.; Terazawa, Minoru; Koike, Takayoshi; Zyryanov, Vyacheslav I. Citation Eurasian Journal of Forest Research, 13(1), 25-40 Issue Date 2010-08 Doc URL http://hdl.handle.net/2115/43853 Type bulletin (article) File Information EJFR13-1_004.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Eurasian J. For. Res. 13-1: 25-40 , 2010 © Hokkaido University Forests, EFRC ------------------------------------------------------------------------------------------------------------------------------------------------------------- White Birch Trees as Resource Species of Russia: Their Distribution, Ecophysiological Features, Multiple Utilizations 1* 2 3 1 ZYRYANOVA Olga A. , TERAZAWA Minoru , KOIKE Takayoshi and ZYRYANOV Vyacheslav I. 1 V.N.Sukachev Institute of Forest SB RAS, Academgorodok, 50, Bldg. 28, Krasnoyarsk, 660036, Russia 2 Emeritus Professor, Hokkaido University, Sapporo 060-8589, Japan, Universal Niuppu Organization, Bifuka Hokkaido 089-2208, Japan 3 Hokkaido University, Department of Forest Science, Sapporo 060-8589, Japan Abstract Four birch tree species (Betula costata, B. pendula, B. platyphylla, B. pubescens) are traditionally important resource species in Russia. In the article, we discuss their spatial and ecophysiological features, biochemical constituents of the living tissues of the birches such as the wood, outer and inner bark, twigs, leaves, buds, roots. The exudation, tapping periods and sap productivity, exudated birch sap and derived birch tar are also reviewed. We show numerous useful wooden, medicinal, tanning, coloring as well as feeding and decorative properties. Chaga – (Inonotus obliquus), a fungi-parasite developed on the stems of the birch trees, is mentioned to be famous due to its antitumor and/or especially anti-cancer activity.
    [Show full text]
  • N I W O 2011/152886
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date / n / i 8 December 2011 (08.12.2011) W O 2011/152886 A 2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61L 9/01 (2006.01) A61K 31/23 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 31/221 (2006.01) A61Q 15/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/22 (2006.01) A61Q 13/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, PCT/US201 1/022697 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (22) International Filing Date: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 27 January 201 1 (27.01 .201 1) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (30) Priority Data: ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/35 1,435 4 June 2010 (04.06.2010) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, ΓΓ 12/974,7 16 2 1 December 2010 (21 .12.2010) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, , LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicant (for all designated States except US): SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ROBERTET, INC.
    [Show full text]
  • Use of Botanical Pesticides in Modern Plant Protection
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 133,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 12 Use of Botanical Pesticides in Modern Plant Protection Kari Tiilikkala1, Isa Lindqvist1, Marleena Hagner2, Heikki Setälä2 and Dionyssios Perdikis3 1MTT Agrifood Research Finland, Plant Production 2Department of Environmental Sciences, University of Helsinki 3Agricultural University of Athens, Laboratory of Agricultural Zoology and Entomology 1,2Finland 3Greece 1. Introduction The European Union has made very clear political decisions to increase environmental awareness. A Thematic Strategy on the Sustainable Use of Pesticides was launched by the Commission of the European Communities in 2006. It was decided to minimize the hazards and risks to health and the environment caused by the use of plant protection products. In 2009, the European Parliament accepted a new framework directive on the sustainable use of pesticides. Directive 2009/128/EC fosters the development of plant protection and integrated pest management (IPM) in the EU. The directive states that “when pesticides are used, appropriate risk management measures should be established and low-risk pesticides as well as biological control measures should be considered in the first place“.
    [Show full text]
  • Our Foreign Trade in Chemicals
    840 THE JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY Vol. 12, NO. 9 The deposits of salt in the United States are unimportant. If the Geological Survey and the Agricultural De- The country possesses no really considerable salt industry partment will make the search they will earn the ever- but is supplied so far as interior consumption is concerned to lasting gratitude of the farmer, and release the strangle- a small extent by brine springs. hold which European potash has on this country. The principal supplies, however, are derived from England, Pending that time, the only hope for normally priced and the shores of Spain and Portugal. The same remark potash is for the final successful development of the applies to Canada. processes for recovering potash from greensand or This statement was probably made about 1860 to feldspar, one very large plant for which is nearing com- 1870 and was doubtless true then, but in 1887 the pletion ih New Jersey, which will produce potash United States produced over I,IOO,OOO tons; in 1900, of the highest grades of all salts required. By the z,8oo,ooo; and in 1,913,4,800,000 tons. Likewise the sale of its valuable by-product at ordinary prices its price of common salt in 1866 was about $13.00per ton, potash cost will be less than nothing. and in 1887, $3.50 per ton at the mines, while in 1913 The Government’s potash search reminds me of the it got as low as $2.00 per ton. golfer who, after losing the hole, looking for his ball When the potash deposits which are surely there are in the heavy “rough” where his unscrupulous opponent developed, $5 or $IO per ton for 80 per cent “thought it went,” finds it too late nicely placed in the muriate of potash will be a high price, and no greater fair green where “there was no use looking as it benefit can accrue to the farmer than this.
    [Show full text]
  • Untitled Spreadsheet
    Most of these ingredients are commonly used in foods and R.J. Reynolds List of Cigarette beverages, or permitted for use in foods by the U.S. Food and Ingredients 2019* Drug Administration (FDA), or have been given the status * Highlighted yellow = flavor/aroma (almost all the items in this “Generally Recognized as Safe in Foods” (GRAS) by FDA or ingredient list have to do with flavor or aroma. A few have been other recognized expert committee, organization or regulatory highlighted to give an example) body. Ingredient Description Ingredient Description Acetanisole is an aromatic chemical Immortelle (Absolute and Extract) aromatic - warm sweet compound with an aroma caramel hay fruity honey described as sweet, fruity, nutty, tobacco and similar to vanilla. Acetic Acid flavoring agent with a flavor profile of Invert Sugar sweetner Acid, Fruit, Pungent, Sour, Vinegar Acetoin is one of the compounds that Ionone, Beta- Odor Description: Floral, gives butter its characteristic Orris, Fruity, Berry, flavor. Woody. Acetophenone an ingredient in fragrances that Isoamyl Acetate flavoring agent described resemble almond, cherry, as tasting like banana honeysuckle, jasmine, and strawberry. Acetylpyrazine has a role as a flavouring agent. t Isoamyl Benzoate fruity odor has been identified as one of the volatile flavor constituents in popcorn, bread crust, vinegar, and potato snacks. Acetylpyridine, 2- flavoring agent with a flavor Isoamyl Butyrate flavoring agent used to profile of popcorn and roasted make fruit juice flavors nuts. Acetylpyridine,
    [Show full text]
  • Vegetal Grave Goods in a Female Burial on Bornholm (Denmark)
    Danish Journal of Archaeology, 2014 Vol. 3, No. 1, 52–60, http://dx.doi.org/10.1080/21662282.2014.994280 Vegetal grave goods in a female burial on Bornholm (Denmark) from the Late Roman Iron Age period interpreted in a comparative European perspective Sabine Karga,b*, Ulla Lund Hansenb, Anne Margrethe Walldénb, Jens Glastrupc, Henrik Ærenlund Pedersena and Finn Ole Sonne Nielsend aFaculty of Science, Natural History Museum of Denmark, University of Copenhagen; bFaculty of Humanities, Saxo Institute, Department of Archaeology, University of Copenhagen; cConservation Department, National Museum of Denmark, Kgs. Lyngby; dBornholms Museum, Rønne (Received 13 March 2014; accepted 21 November 2014) Knowledge about the healing properties of plant substances is probably as old as humankind, and this can be demonstrated by botanical finds in archaeological contexts. Southern Scandinavia has a long tradition of supplying deceased persons with vegetal material for use in their afterlife, as shown by single seeds or processed plants in the form of foods, drinks or medicines. A well- known example is the small container made of birch bark most probably filled with a kind of mead produced from honey, in the Egtved girl’scoffinafind which has been dated to the Early Bronze Age. Another fascinating plant discovery derives from the grave of the Fyrkat woman dated to the Viking Age: a handful seeds of the poisonous plant henbane (Hyoscyamus niger)wasfoundina small pocket fixedtothewoman’s belt. Plant materials enclosed in small amulet boxes are quite common and are frequently attached to necklaces that the deceased had certainly worn during their lives. In this article, we discuss the organic finds from a newly excavated amulet box which was discovered in a woman’s grave at the Late Roman Iron Age site of Vellensby, on the island of Bornholm.
    [Show full text]
  • Comprehensive Mapping of Volatile Organic Compounds in Fruits
    International PhD Program in Biomolecular Sciences XXVII Cycle Comprehensive Mapping of Volatile Organic Compounds in Fruits Tutor Dr. Fulvio Mattivi Department of Food Quality and Nutrition, Fondazione Edmund Mach Advisor Prof. Vladimir Shulaev Department of Biological Sciences, University of North Texas Ph.D. Thesis of Manoj Shahaji Ghaste Department of Food Quality and Nutrition Fondazione Edmund Mach 2013-2014 This thesis is lovingly dedicated to my Mother. Her support, encouragement, belief and constant love have sustained me throughout my life. Declaration I, Manoj Shahaji Ghaste confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Thesis abstract Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of a database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols.
    [Show full text]
  • 3OOVIP Shampoos "Improved Formula" Series
    Natural Health Technologies 3OOVIP Shampoos "improved formula" series 2015 3OOVIP — IMPROVED FORMULA VEDA is proud to present the updated series of grooming products aimed to provide hygienic care after the hair-coat covering of horses. IMPROVED FORMULA New active ingredients have been added to the shampoos composition: KERATIN — a biopolymer substance that is extracted from sheep's wool. It penetrates to the heart of the hair shaft, reconstructs and improves its structure. It protects the scalp from the negative effects of external environment, restores the damaged areas and recreates the natural keratin layer of the hair. CONIFEROUS CHLOROPHYLL-CAROTENE PASTE — a phytoncidal multivitamin complex that possesses beneficial properties for the hair and fur due to the presence of chlorophyll, phytosterols, and volatile. MILK WHEY — due to the content of vitamins, amino acids and minerals, promotes hair growth, strengthens and makes them shiny and elastic. DECOCTIONS OF HERBS (CHAMOMILE, NETTLE, BURDOCK) — the useful properties of theses infusions are caused by the content of many useful substances, minerals, essential oils and vitamins. They contribute to the strengthening of hair growth, strengthens the roots, improve the overall appearance. NEW PACKAGE DESIGN Before after All of the products from the updated 3OOVIP series are presented in a new package design: ► accurate and neat design in accordance with the brand style; ► the «silver horse» steps out as an element of continuity; ► a new updated modern 3OOVIP logo design; ► focus on the umbrella brand logo — VEDA; ► a mark "improved formula". Shampoo-balm revitalizing with tar and propolis The superconcentrated shampoo provides professional high quality hygienic care for the horse.
    [Show full text]
  • FOR IMMEDIATE RELEASE PRIVATE BLEND OUD COLLECTION “I Have
    FOR IMMEDIATE RELEASE PRIVATE BLEND OUD COLLECTION “I have wanted to revisit oud for years; it is one of the most endlessly fascinating ingredients in a perfumer’s palette. For this collection, I explored how oud could intertwine with other precious ingredients from the rich and storied culture and artisanal traditions of the Middle East.”—Tom Ford The Private Blend Oud Collection is an olfactory journey that explores three mesmerizing and sensual facets of oud. Two new oud fragrances join the best-selling fragrance, Private Blend Oud Wood, a groundbreaking composition of exotic woods and spices that is hailed as a definitive interpretation of oud. The new fragrances, Private Blend Oud Fleur and Private Blend Tobacco Oud, share the signature elements of the original Oud Wood—oud, sandalwood and patchouli—then follow two unique and contrasting directions. They give Tom Ford another opportunity to show his mastery of this rare and precious ingredient. The collection of three oud fragrances also offers three bath and body products that offer sumptuous new ways to wear this unforgettable note, creating a complete world of oud within Tom Ford Private Blend. Oud Wood Body Moisturizer, Oud Wood Shower Gel and Oud Wood Bath Soap are perfumed with the original Oud Wood fragrance. PRIVATE BLEND OUD WOOD Private Blend Oud Wood captures the most sophisticated, precious and highly regarded materials in the Middle East. Rich, elegant oud is paired with smoky birch tar and cistus heart, which impart a sultry, smoky effect reminiscent of burnt incense lingering in the air, further enhancing the fragrance’s depth and sensuality.
    [Show full text]
  • Betula Lenta L
    Betula lenta L. Betulaceae Cherry birch, Sweet birch, Black birch Source: James A. Duke. 1983. Handbook of Energy Crops. unpublished. 1. Uses 2. Folk Medicine 3. Chemistry 4. Toxicity 5. Description 6. Germplasm 7. Distribution 8. Ecology 9. Cultivation 10. Harvesting 11. Yields and Economics 12. Energy 13. Biotic Factors 14. References Uses A beer is made from birch bark. Fernald et al., (1958) quote an old English recipe for the beer: "To every Gallon of Birch-water put a quart of Honey, well stirr'd together; then boil it almost an hour with a few Cloves, and a little Limon-peel, keeping it well scumm'd. When it is sufficiently boil'd, and become cold, add to it three or four Spoonfuls of good Ale to make it work...and when the Test begins to settle, bottle it up . it is gentle, and very harmless in operation within the body, and exceedingly sharpens the Appetite, being drunk ante pastum." According to Grieve (1931), Kamschatka natives drink the sap without previous fermentation. In Spring, the inner bark can be cut up into noodle-sized strips and cooked as birch "noodles." Like maple sap, the sap can be used for honey, syrup, or sugar after boiling down. Wood used by cabinet makers. The oil distilled from the wood is insectifugal and can be used to preserve furs. Sweet Birch oil is used as a counter irritant for arthralgia and neuralgia, usually in balms, liniments, and ointments. It is used to impart a wintergreen flavor in such things as baked goods, candies, chewing gums, dairy desserts, gelatins, puddings, and root beer, rarely constituting as much as 0.1% of candy (Leung, 1980).
    [Show full text]