The Security Impact of a New Cryptographic Library
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Frankencerts for Automated Adversarial Testing of Certificate
Using Frankencerts for Automated Adversarial Testing of Certificate Validation in SSL/TLS Implementations Chad Brubaker ∗ y Suman Janay Baishakhi Rayz Sarfraz Khurshidy Vitaly Shmatikovy ∗Google yThe University of Texas at Austin zUniversity of California, Davis Abstract—Modern network security rests on the Secure Sock- many open-source implementations of SSL/TLS are available ets Layer (SSL) and Transport Layer Security (TLS) protocols. for developers who need to incorporate SSL/TLS into their Distributed systems, mobile and desktop applications, embedded software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, Ma- devices, and all of secure Web rely on SSL/TLS for protection trixSSL, cryptlib, and several others. Several Web browsers against network attacks. This protection critically depends on include their own, proprietary implementations. whether SSL/TLS clients correctly validate X.509 certificates presented by servers during the SSL/TLS handshake protocol. In this paper, we focus on server authentication, which We design, implement, and apply the first methodology for is the only protection against man-in-the-middle and other large-scale testing of certificate validation logic in SSL/TLS server impersonation attacks, and thus essential for HTTPS implementations. Our first ingredient is “frankencerts,” synthetic and virtually any other application of SSL/TLS. Server authen- certificates that are randomly mutated from parts of real cer- tication in SSL/TLS depends entirely on a single step in the tificates and thus include unusual combinations of extensions handshake protocol. As part of its “Server Hello” message, and constraints. Our second ingredient is differential testing: if the server presents an X.509 certificate with its public key. -
Nacl's Crypto Box in Hardware
NaCl’s crypto_box in hardware Michael Hutter1;, Jürgen Schilling2, Peter Schwabe3, and Wolfgang Wieser2 ? 1 Rambus Cryptography Research Division 425 Market Street, 11th Floor, San Francisco, CA 94105, USA [email protected] 2 Graz University of Technology, IAIK Inffeldgasse 16a, A-8010, Graz, Austria [email protected],[email protected] 3 Radboud University Digital Security Group, PO Box 9010, 6500GL Nijmegen, The Netherlands [email protected] Abstract. This paper presents a low-resource hardware implementation of the widely used crypto_box function of the Networking and Cryptog- raphy library (NaCl). It supports the X25519 Diffie-Hellman key ex- change using Curve25519, the Salsa20 stream cipher, and the Poly1305 message authenticator. Our targeted application is a secure communica- tion between devices in the Internet of Things (IoT) and Internet servers. Such devices are highly resource-constrained and require carefully op- timized hardware implementations. We propose the first solution that enables 128-bit-secure public-key authenticated encryption on passively- powered IoT devices like WISP nodes. From a cryptographic point of view we thus make a first step to turn these devices into fully-fledged participants of Internet communication. Our crypto processor needs a silicon area of 14.6 kGEs and less than 40 µW of power at 1 MHz for a 130 nm low-leakage CMOS process technology. Keywords: Internet of Things, ASIC, Salsa20, Poly1305, Curve25519. 1 Introduction We need to empower computers with their own means of gathering in- formation, so they can see, hear and smell the world for themselves, in all its random glory. RFID and sensor technology enable computers to observe, identify and understand the world—without the limitations of human-entered data. -
Comparing the Usability of Cryptographic Apis
Comparing the Usability of Cryptographic APIs Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel∗, Doowon Kimy, Michelle L. Mazureky, and Christian Stransky CISPA, Saarland University; ∗National Institute of Standards and Technology; yUniversity of Maryland, College Park Abstract—Potentially dangerous cryptography errors are well- Many researchers have used static and dynamic analysis documented in many applications. Conventional wisdom suggests techniques to identify and investigate cryptographic errors in that many of these errors are caused by cryptographic Appli- source code or binaries [2]–[6]. This approach is extremely cation Programming Interfaces (APIs) that are too complicated, have insecure defaults, or are poorly documented. To address this valuable for illustrating the pervasiveness of cryptographic problem, researchers have created several cryptographic libraries errors, and for identifying the kinds of errors seen most that they claim are more usable; however, none of these libraries frequently in practice, but it cannot reveal root causes. Conven- have been empirically evaluated for their ability to promote tional wisdom in the security community suggests these errors more secure development. This paper is the first to examine proliferate in large part because cryptography is so difficult for both how and why the design and resulting usability of different cryptographic libraries affects the security of code written with non-experts to get right. In particular, libraries and Application them, with the goal of understanding how to build effective Programming Interfaces (APIs) are widely seen as being future libraries. We conducted a controlled experiment in which complex, with many confusing options and poorly chosen 256 Python developers recruited from GitHub attempt common defaults (e.g. -
You Really Shouldn't Roll Your Own Crypto: an Empirical Study of Vulnerabilities in Cryptographic Libraries
You Really Shouldn’t Roll Your Own Crypto: An Empirical Study of Vulnerabilities in Cryptographic Libraries Jenny Blessing Michael A. Specter Daniel J. Weitzner MIT MIT MIT Abstract A common aphorism in applied cryptography is that cryp- The security of the Internet rests on a small number of open- tographic code is inherently difficult to secure due to its com- source cryptographic libraries: a vulnerability in any one of plexity; that one should not “roll your own crypto.” In par- them threatens to compromise a significant percentage of web ticular, the maxim that complexity is the enemy of security traffic. Despite this potential for security impact, the character- is a common refrain within the security community. Since istics and causes of vulnerabilities in cryptographic software the phrase was first popularized in 1999 [52], it has been in- are not well understood. In this work, we conduct the first voked in general discussions about software security [32] and comprehensive analysis of cryptographic libraries and the vul- cited repeatedly as part of the encryption debate [26]. Conven- nerabilities affecting them. We collect data from the National tional wisdom holds that the greater the number of features Vulnerability Database, individual project repositories and in a system, the greater the risk that these features and their mailing lists, and other relevant sources for eight widely used interactions with other components contain vulnerabilities. cryptographic libraries. Unfortunately, the security community lacks empirical ev- Among our most interesting findings is that only 27.2% of idence supporting the “complexity is the enemy of security” vulnerabilities in cryptographic libraries are cryptographic argument with respect to cryptographic software. -
Pynacl Release 1.4.0.Dev1
PyNaCl Release 1.4.0.dev1 unknown Jun 02, 2019 CONTENTS 1 Features 3 2 Contents 5 2.1 Public Key Encryption..........................................5 2.2 Secret Key Encryption..........................................9 2.3 Digital Signatures............................................ 12 2.4 Hashing.................................................. 18 2.5 Password hashing............................................ 20 3 Support Features 25 3.1 Encoders................................................. 25 3.2 Exceptions................................................ 26 3.3 Utilities.................................................. 26 3.4 nacl.hash................................................. 27 3.5 nacl.pwhash............................................... 28 3.6 nacl.hashlib................................................ 33 3.7 Installation................................................ 34 3.8 Doing A Release............................................. 34 3.9 Reference vectors............................................ 35 3.10 Changelog................................................ 48 3.11 Indices and tables............................................ 50 Bibliography 51 Python Module Index 53 Index 55 i ii PyNaCl, Release 1.4.0.dev1 PyNaCl is a Python binding to libsodium, which is a fork of the Networking and Cryptography library. These libraries have a stated goal of improving usability, security and speed. It supports Python 2.7 and 3.4+ as well as PyPy 2.6+. CONTENTS 1 PyNaCl, Release 1.4.0.dev1 2 CONTENTS CHAPTER ONE -
Security Issues in the Diffie-Hellman Key Agreement Protocol
Security Issues in the Diffie-Hellman Key Agreement Protocol Jean-Franc¸ois Raymond and Anton Stiglic Zero-Knowledge Systems Inc. jfr, anton ¡ @zeroknowledge.com Abstract Diffie-Hellman key agreement protocol [20] implementations have been plagued by serious security flaws. The attacks can be very subtle and, more often than not, have not been taken into account by protocol designers. In this summary we discuss both theoretical attacks against the Diffie-Hellman key agreement pro- tocol and attacks based on implementation details . It is hoped that computer se- curity practitioners will obtain enough information to build and design secure and efficient versions of this classic key agreement protocol. 1 Introduction In their landmark 1976 paper “New Directions in Cryptography”[20], Diffie and Hell- man present a secure key agreement protocol that can be carried out over public com- munication channels. Their protocol is still widely used to this day. Even though the protocol seems quite simple, it can be vulnerable to certain attacks. As with many cryptographic protocols, the Diffie-Hellman key agreement protocol (DH protocol) has subtle problems that cryptographers have taken many years to discover. This vulnerability is compounded by the fact that programmers often do not have a proper understanding of the security issues. In fact, bad implementations of crypto- graphic protocols are, unfortunately, common [2]. In this work, we attempt to give a comprehensive listing of attacks on the DH proto- col. This listing will, in turn, allow us to motivate protocol design decisions. Note that throughout this presentation emphasis is placed on practice. After reading this paper, one might not have an extremely detailed understanding of previous work and theoret- ical problems, but should have a very good idea about how to securely implement the DH protocol in different settings. -
Master's Thesis
Securing In-Boat CAN Communication over the Internet Using a Cell Phone as Wi-Fi Router with Limited Hardware Master's Thesis in Computer Science and Engineering RICKARD PERSSON ALESANDRO SANCHEZ Chalmers University of Technology Department of Computer Science and Engineering Gothenburg, Sweden 2015 The Author grants to Chalmers University of Technology and University of Gothen- burg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Securing In-Boat CAN Communication over the Internet Securing In-Boat CAN Communication over the Internet Using a Cell Phone as Wi-FI Router with Limited Hardware Rickard, Persson Alesandro, Sanchez ©Rickard Persson, June 2015 ©Alesandro Sanchez, June 2015 Examiner: Tomas Olovsson Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 G¨oteborg Sweden Telephone + 46 (0)31-772 1000 Department of Computer Science and Engineering Gothenburg, Sweden June 2014 Abstract Opening a communication channel to the internal vehicle bus of pleasure boats through the Internet, offers benefits such as remote diagnostics and software update of boat components. -
Chapter 11: Building Secure Software Lars-Helge Netland [email protected] 10.10.2005 INF329: Utvikling Av Sikre Applikasjoner Overview
Programming with cryptography Chapter 11: Building Secure Software Lars-Helge Netland [email protected] 10.10.2005 INF329: Utvikling av sikre applikasjoner Overview Intro: The importance of cryptography The fundamental theorem of cryptography Available cryptographic libraries Java code examples One-time pads Summary 2 Intro Cryptography ‘kryptos’(=hidden) ‘graphein’ (=to write) Layman description: the science of encrypting and decrypting text 3 The Code Book Simon Singh Highly accessible introduction to cryptography Retails at $10 (free at public libraries) Includes crypto challenges 4 Crypto: Why is it important?(I) Basic services: confidentiality encrypted text only viewable by the intended recipient integrity assurance to the involved parties that the text was not tampered with in transit authentication proof of a binding of an identity to an identification tag (often involves trusted third parties) 5 Crypto: Why is it important?(II) Basic services (continued) authorization restricting access to resources (often involves authentication) digital signatures electronic equivalent of hand-written signatures non-repudiation 6 The fundamental theorem of cryptography Do NOT develop your own cryptographic primitives or protocols The history of cryptography repeatedly shows how “secure” systems have been broken due to unknown vulnerabilities in the design If you really have to: PUBLISH the algorithm 7 Examples on how ciphers have been broken Early substitution ciphers broken by exploiting the relative frequency of letters WW2: The enigma machine -
Libsodium V1.0.12 and V1.0.13 Security Assessment
Libsodium v1.0.12 and v1.0.13 Security Assessment Copyright © 2017 Cryptography Engineering LLC Contents 1 Executive Summary 2 2 Introduction 3 2.1 Scope . .3 2.2 Approach . .4 2.3 Classification and Severity Rating . .4 3 Findings 6 3.1 Summary of Findings . .6 3.2 Overview of Cryptographic Design . .7 3.3 Static Analysis Results . 11 3.4 Dynamic Analysis Results . 11 3.5 Detailed Findings . 12 3.5.1 SD-01: Randomness source on Windows based on unofficial APIs only 12 3.5.2 SD-02: Possible null pointer dereference in key exchange API . 12 3.5.3 SD-03: Potential issues with abort() to terminate program on error conditions . 13 3.5.4 SD-04: Potential risks with the custom RNG API . 13 3.5.5 SD-05: Missing APIs in the libsodium documentation . 14 3.5.6 SD-06: Lack of elliptic curves at higher security levels . 14 3.5.7 Formal Verification (In progress) . 15 3.5.8 Diffs between version 1.0.12 and 1.0.13 . 15 4 Conclusions 17 1 Executive Summary Libsodium1 is an open-source, easy-to-use fork of the C-language NaCl crypto library that is portable, cross-platform and provides many common cryptographic functions. These include public-key encryption, signatures, key derivation, password hashing, message authentication codes, stream ciphers, pseudo-random number generators, random number generation, and support for elliptic curves such as Curve25519. This review was funded by Private Internet AccessTM (PIA), although PIA did not direct the review or modify the results. -
NSA's MORECOWBELL
NSA's MORECOWBELL: Knell for DNS Christian Grothoff Matthias Wachs Monika Ermert Jacob Appelbaum Inria TU Munich Heise Verlag Tor Project 1 Introduction On the net, close to everything starts with a request to the Domain Name System (DNS), a core Internet protocol to allow users to access Internet services by names, such as www.example.com, instead of using numeric IP addresses, like 2001:DB8:4145::4242. Developed in the \Internet good old times" the contemporary DNS is like a large network activity chart for the visually impaired. Consequently, it now attracts not only all sorts of commercially-motivated surveillance, but, as new documents of the NSA spy program MORECOWBELL confirm, also the National Security Agency. Given the design weaknesses of DNS, this begs the question if DNS be secured and saved, or if it has to be replaced | at least for some use cases. In the last two years, there has been a flurry of activity to address security and privacy in DNS at the Internet Engineering Task Force (IETF), the body that documents the DNS standards. The Internet Architecture Board, peer body of the IETF, just called on the engineers to use encryption everywhere, possibly including DNS. [4] A recent draft [6] by the IETF on DNS privacy starts by acknowledging that the DNS \... is one of the most important infrastructure components of the Internet and one of the most often ignored or misunderstood. Almost every activity on the Internet starts with a DNS query (and often several). Its use has many privacy implications ..." Despite seemingly quick consensus on this assessment, the IETF is not expecting that existing industry solutions will change the situation anytime soon: \It seems today that the possibility of massive encryption of DNS traffic is very remote." [5] From a surveillance perspective, DNS currently treats all information in the DNS database as public data. -
MPH UG 990-2417.Book
Contents Introduction--1 Content and Purpose of This Guide . 1 User Management . 2 Security--3 Security Features . 3 Authentication . 7 Encryption . 8 Creating and Installing Digital Certificates . 10 Firewalls. 15 Using the APC Security Wizard--16 Overview . 16 Create a Root Certificate and Server Certificates . 19 Create a Server Certificate and Signing Request . 23 Create an SSH Host Key . 26 Control Console Access and Security--28 Introduction . 28 Telnet and Secure SHell (SSH) . 28 Web Interface Access and Security--31 RADIUS--34 Supported RADIUS Functions and Servers . 34 Configure the Management Card or Device . 34 Configure the RADIUS Server. 36 SECURITY HANDBOOK Devices Network-Enabled Index--40 ® i Introduction Content and Purpose of This Guide This guide documents security features for firmware versions 3.x.x for APC® Network Management Cards and for devices with embedded components of APC Network Management Cards, which enable the devices to function remotely over the network. For any 2.x.x firmware release, see the security-related chapters in the User's Guide for that release. This guide documents the following protocols and features, how to select which ones are appropriate for your situation, and how to set up and use them within an overall security system: • Telnet and Secure SHell (SSH) • Secure Sockets Layer (SSL) •RADIUS • SNMPv1 and SNMPv3 In addition, this guide documents how to use the APC Security Wizard to create the components required for the high security available through SSL and SSH. SECURITY HANDBOOK Devices Network-Enabled ® 1 User Management Types of user accounts A Network Management Card or network-enabled device has three basic levels of access: • An Administrator can use all of the management menus available in the Web interface and control console. -
Pynacl Release 1.2.0.Dev1
PyNaCl Release 1.2.0.dev1 Oct 09, 2017 Contents 1 Features 3 2 Contents 5 2.1 Public Key Encryption..........................................5 2.2 Secret Key Encryption..........................................9 2.3 Digital Signatures............................................ 12 2.4 Hashing.................................................. 15 2.5 Password hashing............................................ 18 3 Support Features 23 3.1 Encoders................................................. 23 3.2 Exceptions................................................ 24 3.3 Utilities.................................................. 25 3.4 nacl.hash................................................. 25 3.5 nacl.hashlib................................................ 26 3.6 Installation................................................ 27 3.7 Doing A Release............................................. 28 3.8 Reference vectors............................................ 28 3.9 Changelog................................................ 37 3.10 Indices and tables............................................ 38 Bibliography 39 i ii PyNaCl, Release 1.2.0.dev1 PyNaCl is a Python binding to libsodium, which is a fork of the Networking and Cryptography library. These libraries have a stated goal of improving usability, security and speed. It supports Python 2.7 and 3.3+ as well as PyPy 2.6+. Contents 1 PyNaCl, Release 1.2.0.dev1 2 Contents CHAPTER 1 Features • Digital signatures • Secret-key encryption • Public-key encryption 3 PyNaCl, Release 1.2.0.dev1 4 Chapter 1. Features CHAPTER 2 Contents Public Key Encryption Imagine Alice wants something valuable shipped to her. Because it’s valuable, she wants to make sure it arrives securely (i.e. hasn’t been opened or tampered with) and that it’s not a forgery (i.e. it’s actually from the sender she’s expecting it to be from and nobody’s pulling the old switcheroo). One way she can do this is by providing the sender (let’s call him Bob) with a high-security box of her choosing.