Phylogeny and Chloroplast Evolution in Brassicaceae” Supervisor: Claudio Varotto

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Chloroplast Evolution in Brassicaceae” Supervisor: Claudio Varotto University of Trento PhD Thesis (2014 -2015) Hu Shiliang “Phylogeny and chloroplast evolution in Brassicaceae” Supervisor: Claudio Varotto International PhD Program in Biomolecular Sciences Centre for Integrative Biology XXVIII Cycle Phylogeny and chloroplast evolution in Brassicaceae Tutor Dr. Claudio Varotto FEM- Agricultural Institute of San Michele all’Adige Ecogenomics research group Ph.D. Thesis of Hu Shiliang FEM- IASMA Academic Year 2014-2015 Declaration I (Hu Shiliang) confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Student's signature: Date of submission: 14/03/2016 Abstract Brassicaceae is a large family of flowering plants, characterized by cruciform corolla, tetradynamous stamen and capsular fruit. In light of the important economic and scientific values of Brassicaceae, many phylogenetic and systematic studies were carried out. One recent and important phylogenetic analysis revealed three major lineages (I, II and III), however, classification at different taxonomic levels (tribe, genus, and species) remained problematic and evolutionary relationships among and within these lineages were still largely unclear. This is partly due to the fact that the past studies lacked information, as they mainly utilized the morphological data, nuclear DNA, partial chloroplast (cp) genes and so on. Nowadays, next generation sequencing (NGS) technology provides the possibility to make use of big data in phylogeny and evolutionary studies. Thus, we sequenced the chloroplast genomes of 80 representative species, using additional 15 reference chloroplast genomes from the NCBI database, and carried out both the phylogenetic reconstruction and the study of protein coding genes evolution in this novel dataset with different methods. Several novel results were obtained. 1 Successful application of NGS technology in chloroplast genome sequencing. During the final assembly, I could reconstruct full chloroplast genomes and the structure maps for 14 out of 80 sampled species, while the remaining were assembled nearly completely with only few gaps remaining. 2 Characterization of chloroplast genome structure. Gene number and order, single sequence repeat (SSR) as well as variety and distribution of large repeat sequence were characterized. 3 The difference of codon usage frequency was calculated between Cardamine resedifolia and Cardamine impatiens. Twelve genes with signatures of positive selection were identified at a family-wide level. 4 Three major lineages (I – III) were confirmed with high support values. Besides, the positions of various tribes were reclassified. Relationships among and within these lineages were highly resolved and supported in the final tree. Most of the tribes in the analyses were inferred to be monophyletic, only Thlaspideae was paraphyletic. Anastaticeae was for the first time classified into position of expanded lineage II, and position of tribe Lepidieae was delimited with relatively low support values in the final phylogenetic tree. This study was a new and successful application of NGS in large-scale Brassicaceae phylogeny and evolution, which offered the chance to look in details of the structural and functional features of the chloroplast genome. These results provided a paradigm on how to proceed towards the full elucidation of the evolutionary relationships among various biological species in the tree of life. Index Chapter 1: Introduction .......................................................................................................................... 1 1.1 Brief introduction of Brassicaceae: Species, Distribution, and Characteristics ........................... 1 1.2 History of phylogeny and evolutionary study in Brassicaceae .................................................... 3 1.2.1 Brief history of systematics, phylogenetics, and evolutionary research in Brassicaceae.. 3 1.3 Brief introduction of data collection and approaches for phylogenetic analysis ......................... 8 1.3.1 Traditional data resource and chloroplast genetics ........................................................... 8 1.3.2 Principle of phylogenetic inference and common phylogeny programs ......................... 11 1.4 New opportunities for in-depth phylogeny and evolution studies ............................................. 13 1.4.1 Development of high-throughput sequencing technology and its application in phylogeny and Molecular evolution study ............................................................................... 13 1.4.2 Established bioinformatic techniques promoted the phylogeny and molecular evolution studies ...................................................................................................................................... 14 1.4.3 New strategy for the phylogeny and molecular evolution studies .................................. 15 1.5 Aim of the study ........................................................................................................................ 18 Chapter 2: Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats ............................................................................................................ 21 2.1 Introduction ............................................................................................................................... 21 2.2 Authors’ specific contributions for the appended paper ............................................................ 22 Chapter 3: Comparative analysis and structural feature exploration with 12 newly assembled chloroplast genomes in tribe Cardamineae ......................................................................................... 37 3.1 A brief introduction of tribe Cardamineae ................................................................................. 37 3.2 Sampling and bioinformatic pipeline ......................................................................................... 39 3.3 Feature exploration and a further phylogenetic analysis within tribe Cardamineae .................. 41 3.4 Conclusions ............................................................................................................................... 49 Chapter 4: Molecular Phylogeny in Brassicaceae based on 71 chloroplast protein-coding genes: Species relocation and taxonomic implications ................................................................................... 51 4.1 Short introduction of phylogeny in Brassicaceae ...................................................................... 51 4.2 Sampling and bioinformatic pipeline ......................................................................................... 52 4.3 Result of cp genome assembly and new phylogenetic reconstruction in Brassicaceae family .. 56 4.4 Discussion .................................................................................................................................. 66 Conclusion .............................................................................................................................................. 74 Acknowledgements ................................................................................................................................ 76 Bibliography ........................................................................................................................................... 77 Appendix ................................................................................................................................................ 92 1 Chapter 1: Introduction 1.1 Brief introduction of Brassicaceae: Species, Distribution, and Characteristics Brassicaceae, also known as the mustards, the crucifers or the cabbage family, is included in the order of Brassicales according to the Angiosperm Phylogeny Group system (APG system). It contains over 372 genera and about 4,060 species [1], constituting a large and economically important family in flowering plants, showing a wide diversity of phenotypes. The most common and large genera that identified include Draba with 440 species, Erysimum with 261 species, Lepidium with 234 species, Cardamine with 233 species and Alyssum with 207 species. However, the taxonomic circumscriptions of many taxa are still provisional, as many of the genera having fewer number of species sampled to a relatively low depth [2]. Fig. 1.1 Distribution of the Brassicaceae in the world [3] Previous research revealed a worldwide distribution of species in this family, as all continents except Antarctica (Fig. 1.1) [2], [3] are potential habitats. Most of the species are found concentrated in the temperate regions of the Northern Hemisphere. However, many genera are more common in the southern hemisphere, such as Draba, Lepidium, and Cardamine. Some species, which were subsumed under a genus Heliophila roughly defined by Al-Shehbaz and Mummenhoff, are widely distributed in the southern 1 (especially South African) regions, such as Brachycarpea, Chamira, Schlechteria, and Silicularia [4]. Tropics and subtropical regions, mountainous, and alpine regions are also habitats where Brassicaceae could often be found. The species Arabis alpina, for instance, is a representative that is widespread worldwide in the northern hemisphere, with a marked preference for mountainous, alpine and arctic habitats, including some high mountain chains in Kenya, Tanzania, Ethiopia and East Africa [5]. This worldwide distribution
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Human Impact on the Vegetation of Limestone Cliffs in the Northern Swiss Jura Mountains
    Human impact on the vegetation of limestone cliffs in the northern Swiss Jura mountains Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch - Naturwissenschaftlichen Fakultät der Universität Basel von Stefan Müller aus Murgenthal AG Basel, Mai 2006 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Bruno Baur Prof. Dr. Andreas Gigon Basel, den 23. Mai 2006 Prof. Dr. Hans-Jakob Wirz Dekan Table of contents Summary General Introduction Chapter 1: Rock climbing alters the vegetation of limestone cliffs in the northern Swiss Jura mountains Chapter 2: Effects of rock climbing on the plant community on exposed limestone cliffs of the Gerstelflue in the northern Swiss Jura mountains Chapter 3: Effect of rock climbing on the calcicolous lichen community of limestone cliffs in the northern Swiss Jura mountains Chapter 4: Effects of forestry practices on relict plant species on limestone cliffs in the northern Swiss Jura mountains Chapter 5: Spatial pattern of overgrowing forest around limestone cliffs in the northern Swiss Jura mountains Chapter 6: Nunatak survival and mediaeval human activity influence the genetic population structure of relict plant species in the northern Jura mountains Acknowledgements Curriculum vitae Summary Cliffs provide unique habitats for many specialised organisms, including chamaephytes and slowly growing trees. Drought, high temperature amplitude, scarcity of nutrients and high insolation are general characteristics of exposed limestone cliff faces. The vegetation of limestone cliffs in the Swiss Jura mountains consists of plants of arctic-alpine, continental and Mediterranean origin. Several populations exhibit relicts from post- or interglacial warm or cold climatic periods. Grazing goats and timber harvesting influenced the forests surrounding the limestone cliffs in northern Switzerland for many centuries.
    [Show full text]
  • Multigene Phylogeny, Taxonomy and Reclassification of Hyaloperonospora on Cardamine
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Mycol Progress (2014) 13:131–144 DOI 10.1007/s11557-013-0900-z ORIGINAL ARTICLE Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine Hermann Voglmayr & Young-Joon Choi & Hyeon-Dong Shin Received: 23 January 2013 /Revised: 12 March 2013 /Accepted: 21 March 2013 /Published online: 14 April 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Based on sequence data from cox1, cox2, ITS and Keywords Dentaria . Host range . Obligate parasites . LSU rDNA, it is shown that at least six species of Peronospora . Peronosporaceae Hyaloperonospora occur on the genus Cardamine,mostof which were commonly classified under Peronospora dentariae. Based on sequences from their type hosts, Introduction Peronospora dentariae, Peronospora cardamines-laciniatae, Peronospora dentariae-macrophyllae, Peronospora malyi Recent molecular phylogenetic studies showed that the genus and Peronospora nasturtii-aquatici are combined into Hyaloperonospora, established by Constantinescu and Fatehi Hyaloperonospora, and their circumscription is clarified. (2002)forPeronospora species infecting Brassicaceae, Hyaloperonospora cardamines-enneaphyllos is described as Capparaceae, Cistaceae, Limnanthaceae, Resedaceae and a new species from Cardamine enneaphyllos. The host range Zygophyllaceae, comprises a high biodiversity, its species of Hyaloperonospora nasturtii-aquatici, described from usually being highly host specific (e.g. Riethmüller et al. Nasturtium officinale, is shown to extend to various 2002;Choietal.2003; Voglmayr 2003; Göker et al. 2003, Cardamine species. Host range of species is shown to be 2004, 2009a;Choietal.2011; Voglmayr and Göker 2011). highly diagnostic, with no overlap in their host range, but Therefore, a narrow species circumscription as already advo- species commonly cannot be distinguished by morphology catedbyGäumann(1918, 1923) has been confirmed, alone.
    [Show full text]
  • The Heterodiaspory of Capsella Bursa-Pastoris {Brassicaceae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 2003 Band/Volume: 43_2 Autor(en)/Author(s): Teppner Herwig Artikel/Article: The Heterodiaspory of Capsella bursa-pastoris (Brassicaceae). 381-391 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 43 Fasc. 2 381-391 29. 12. 2003 The Heterodiaspory of Capsella bursa-pastoris {Brassicaceae) By Herwig TEPPNER *) With 2 Figures Received June 20, 2003 Key words: Brassicaceae, Cruciferae, Capsella bursa-pastoris. -Dispersal, fruits, heterodiaspory, polydiaspory. - Terminology. Summary TEPPNER H. 2003. The heterodiaspory of Capsella bursa-pastoris {Brassicaceae). - Phyton (Horn, Austria) 43 (2): 381-391, 2 figures. - English with German summary. In Capsella bursa-pastoris (L.) MEDIK. two kinds of diaspores are formed: 1) the valves of the silicle containing an apical seed (i.e. the uppermost seed of each locule), which are therefore one-seeded mericarps and 2) the true (naked) seeds. Finally, of the fallen valves c. 70 % contained the apical seed; these can be easily dispersed by water and wind. Terms for heteromorphic diaspores are briefly discussed. As regards to terminology, it is proposed to restrict the term heterodiaspory, in the sense of the definition of MÜLLER-SCHNEIDER & LHOTSKÄ 1972: 408, for such cases with diaspores of different levels of morphological organisation on one individual. As an encom- passing term for heterocarpy, heteromericarpy, heterospermy, heterodiaspory etc. the older term polydiaspory (MÜLLER 1955:16) can be used. Zusammenfassung TEPPNER H. 2003. Die Heterodiasporie von Capsella bursa-pastoris (Brassica- ceae).
    [Show full text]
  • Crab Spiders Impact Floral-Signal Evolution Indirectly Through Removal
    ARTICLE DOI: 10.1038/s41467-018-03792-x OPEN Crab spiders impact floral-signal evolution indirectly through removal of florivores Anina C. Knauer1, Moe Bakhtiari1,2 & Florian P. Schiestl1 The puzzling diversity of flowers is primarily shaped by selection and evolutionary change caused by the plant’s interaction with animals. The contribution of individual animal species to net selection, however, may vary depending on the network of interacting organisms. Here 1234567890():,; we document that in the buckler mustard, Biscutella laevigata, the crab spider Thomisus onustus reduces bee visits to flowers but also benefits plants by feeding on florivores. Uninfested plants experience a trade-off between pollinator and spider attraction as both bees and crab spiders are attracted by the floral volatile β-ocimene. This trade-off is reduced by the induced emission of β-ocimene after florivore infestation, which is stronger in plant populations where crab spiders are present than where they are absent, suggesting that plants are locally adapted to the presence of crab spiders. Our study demonstrates the context-dependence of selection and shows how crab spiders impact on floral evolution. 1 Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland. 2Present address: Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000 Neuchatel, Switzerland. Correspondence and requests for materials should be addressedto F.P.S. (email: fl[email protected]) NATURE COMMUNICATIONS | (2018) 9:1367 | DOI: 10.1038/s41467-018-03792-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03792-x lant–animal interactions are a major driver of plant Crab spiders camouflage themselves on flowers to hunt flower- evolution, including both local adaptation and species visiting insects such as pollinators (Fig.
    [Show full text]
  • A New Species from Sichuan (China)
    CARDAMINE XINFENII (BRASSICACEAE), A NEW SPECIES FROM SICHUAN (CHINA) IHSAN A. AL-SHEHBAZ1 Abstract. Cardamine xinfenii, a new species from southern Sichuan Province, is described and illustrated. It does not seem to be closely related to any of the known Asian species of the genus. It is easily distinguished by the scapose habit and by having slender stolons, 7–9-foliolate, strongly toothed basal leaves, spreading floral parts, and filiform, non-auriculate cauline leaves (bracts) subtending the base of lowermost 1 or 2 pedicels of the raceme. Keywords: Brassicaceae, Cardamine, China, Cruciferae, Sichuan. During my 2014 visit to the main herbaria in Sichuan clawed, 4–4.5 mm x 2.5–3 mm, spreading, apex obtuse; Province (China), CDBI and SZ, to work on the treatment stamens subequal, spreading; filament 2.5–3 mm; anthers of Brassicaceae (Cruciferae) for the Flora of Pan-Himalayas, yellowish brown, oblong, ca. 1 mm; median nectaries absent; the following new species of Cardamine L. was discovered. lateral nectaries oblong, to 0.5 mm; style in developing Unfortunately, no other collections of the species were found fruits 1–2 mm. Mature fruits and seeds unknown. among the holdings of these and other Chinese herbaria. Eponymy: This novelty is named after Dr. Gao Xinfin, Although the type locality of this novelty falls outside the director of the herbarium CDBI, Chengdu Institute of boundaries of that flora, two other species, C. hongdeyuana Biology. Al-Shehbaz and C. pseudotrifoliolata Al-Shehbaz, have Distribution: China (south Sichuan). Known only from recently been described from Xizang (Al-Shehbaz, 2015a, b).
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(S): Srikar Chamala, Nicolás García, Grant T
    MarkerMiner 1.0: A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(s): Srikar Chamala, Nicolás García, Grant T. Godden, Vivek Krishnakumar, Ingrid E. Jordon- Thaden, Riet De Smet, W. Brad Barbazuk, Douglas E. Soltis, and Pamela S. Soltis Source: Applications in Plant Sciences, 3(4) Published By: Botanical Society of America DOI: http://dx.doi.org/10.3732/apps.1400115 URL: http://www.bioone.org/doi/full/10.3732/apps.1400115 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ApApplicatitionsons Applications in Plant Sciences 2015 3 ( 4 ): 1400115 inin PlPlant ScienSciencesces S OFTWARE NOTE M ARKERMINER 1.0: A NEW APPLICATION FOR PHYLOGENETIC 1 MARKER DEVELOPMENT USING ANGIOSPERM TRANSCRIPTOMES S RIKAR C HAMALA 2,12 , N ICOLÁS G ARCÍA 2,3,4 * , GRANT T . G ODDEN 2,3,5 * , V IVEK K RISHNAKUMAR 6 , I NGRID E.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Taxa Named in Honor of Ihsan A. Al-Shehbaz
    TAXA NAMED IN HONOR OF IHSAN A. AL-SHEHBAZ 1. Tribe Shehbazieae D. A. German, Turczaninowia 17(4): 22. 2014. 2. Shehbazia D. A. German, Turczaninowia 17(4): 20. 2014. 3. Shehbazia tibetica (Maxim.) D. A. German, Turczaninowia 17(4): 20. 2014. 4. Astragalus shehbazii Zarre & Podlech, Feddes Repert. 116: 70. 2005. 5. Bornmuellerantha alshehbaziana Dönmez & Mutlu, Novon 20: 265. 2010. 6. Centaurea shahbazii Ranjbar & Negaresh, Edinb. J. Bot. 71: 1. 2014. 7. Draba alshehbazii Klimeš & D. A. German, Bot. J. Linn. Soc. 158: 750. 2008. 8. Ferula shehbaziana S. A. Ahmad, Harvard Pap. Bot. 18: 99. 2013. 9. Matthiola shehbazii Ranjbar & Karami, Nordic J. Bot. doi: 10.1111/j.1756-1051.2013.00326.x, 10. Plocama alshehbazii F. O. Khass., D. Khamr., U. Khuzh. & Achilova, Stapfia 101: 25. 2014. 11. Alshehbazia Salariato & Zuloaga, Kew Bulletin …….. 2015 12. Alshehbzia hauthalii (Gilg & Muschl.) Salariato & Zuloaga 13. Ihsanalshehbazia Tahir Ali & Thines, Taxon 65: 93. 2016. 14. Ihsanalshehbazia granatensis (Boiss. & Reuter) Tahir Ali & Thines, Taxon 65. 93. 2016. 15. Aubrieta alshehbazii Dönmez, Uǧurlu & M.A.Koch, Phytotaxa 299. 104. 2017. 16. Silene shehbazii S.A.Ahmad, Novon 25: 131. 2017. PUBLICATIONS OF IHSAN A. AL-SHEHBAZ 1973 1. Al-Shehbaz, I. A. 1973. The biosystematics of the genus Thelypodium (Cruciferae). Contrib. Gray Herb. 204: 3-148. 1977 2. Al-Shehbaz, I. A. 1977. Protogyny, Cruciferae. Syst. Bot. 2: 327-333. 3. A. R. Al-Mayah & I. A. Al-Shehbaz. 1977. Chromosome numbers for some Leguminosae from Iraq. Bot. Notiser 130: 437-440. 1978 4. Al-Shehbaz, I. A. 1978. Chromosome number reports, certain Cruciferae from Iraq.
    [Show full text]
  • Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum Intermedium Munro Ex Morong (Poaceae)
    Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum intermedium Munro Ex Morong (Poaceae) Dissertation for the award of the degree “Doctor of Philosophy” Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) Submitted by Piyal Karunarathne Göttingen, 2018 THESIS COMMITTEE Prof. Dr. Elvira Hörandl Department of Systematics, Biodiversity and Evolution of Plants (with herbarium) Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany Prof. Dr. Holger Kreft Department of Biodiversity, Macroecology & Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen, Germany Dr. Diego Hojsgaard Department of Systematics, Biodiversity and Evolution of Plants (with herbarium) Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany MEMBERS OF THE EXAMINATION BOARD Reviewer Prof. Dr. Elvira Hörandl Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany Second Prof. Dr. Holger Kreft reviewer Department of Biodiversity, Macroecology & Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen, Germany Further members of the Examination Board Prof. Dr. Stefan Scheu J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Prof. Dr. Mark Maraun J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Prof. Dr. Thomas Friedl Dept. EPSAG University of Göttingen Dr. Sven Bradler J.F. Blumenbach-Institut für Zoologie und Anthropologie University of Göttingen ii Acknowledgments I would like to place on record my sincere gratitude to Dr. Diego Hojsgaard for choosing me to carry out this research project, his excellent supervision, tremendous help and advice, and for remaining unflappable despite my various crisis.
    [Show full text]
  • Nested Whole-Genome Duplications Coincide with Diversification And
    ARTICLE https://doi.org/10.1038/s41467-020-17605-7 OPEN Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae Nora Walden 1,7, Dmitry A. German 1,5,7, Eva M. Wolf 1,7, Markus Kiefer 1, Philippe Rigault 1,2, Xiao-Chen Huang 1,6, Christiane Kiefer 1, Roswitha Schmickl3, Andreas Franzke 1, Barbara Neuffer4, ✉ Klaus Mummenhoff4 & Marcus A. Koch 1 1234567890():,; Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phy- logenetic genome-wide association studies to analyze the evolution of morphological form and function. 1 Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany. 2 GYDLE, 1135 Grande Allée Ouest, Québec, QC G1S 1E7, Canada. 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
    [Show full text]