Support Pack Blobfish Pod Play

Total Page:16

File Type:pdf, Size:1020Kb

Support Pack Blobfish Pod Play Presented by Kids Story Room A story podcast for young people Support pack for the Pod Play National Science Week 2020 Kids Story Room – http://kidsstoryroom.com CONTENTS • Key learning areas/Themes/Synopsis • Thematic Activities • Comprehension and Discussion Questions • Cast of Ocean creatures: Blobfish/Tuna/Prawn/Leafy Sea-dragon/Swordfish • About Kids Story Room • Colouring In • Find–a-word • Weblinks and other Marine Education Resources • Ocean Zone Pull Through KEY LEARNING AREAS The Environment – marine habitat and fishing practices/South Australian marine species English/use of language and dialogue – character/personality types Respect for the elderly/working together as a team/overcoming challenges and looking after each other THEMES • The future of our marine life and how we can manage it sustainably • Marine ecosystems and ocean zones • Awareness of our surroundings • Positive consequences of our actions (relay teamwork) • Overcoming challenges and fears to achieve a goal • Empathy • Finding solutions to problems Kids Story Room – http://kidsstoryroom.com CALL OF THE BLOBFISH – SYNOPSIS Deep down in the magical world beneath the waves, the wise and ancient Blobfish needs help. Blobfish reveals to his friend, Prawn, that trouble is on the way and Blobfish needs to speak to a human being, urgently. Prawn springs into action to save his wise old friend and swims up into the open waters of the big blue sea where he meets Swordfish. Swordfish joins the quest and in turn meets Tuna, who leads him to Leafy Seadragon, who sends them to Mera, the dolphin. Each one in this jumbly bunch of sea creatures must overcome their fears and work together in order to protect the Blobfish and save their ocean home. How will they get a person to the very bottom of the ocean? Can they overcome their differences and work as a team? What will they do to save the Blobfish? Kids Story Room – http://kidsstoryroom.com THEMATIC ACTIVITIES • Check out the Sustainable Seafood Guide app – an initiative of the Australian Marine Conservation Society and designed to assist us humans to understand more about the seafood we consume. It’s an excellent resource to learn about what fish we can eat and what fish we should say No to for now. • The pod play Call of the Blobfish explores our marine environment and mentions the different ocean zones. Attached to this pack is a ‘pull-through’ that looks at the different zones of life in the ocean. Make the pull through and then add the creatures from the play to the zones where they live. • In Call of the Blobfish all of the characters help each other to succeed. The play is like a relay race to the finish line. Set up some relay activities in the classroom or playground where in groups of 5 or 6, the students each have a part to play in making something positive happen. (For example: planting a new tree or a herb one person carries the seed, another the water, another digs the hole, another covers the seed with earth and another puts a little stick in the ground to remember where they planted it. Then 5 people are responsible for the life of a little plant. Hopefully all of them will remember that it needs water every day!) • The play references the positive effects of marine parks, of looking after special species of fish and of letting some areas have a rest to replenish the stocks. Ask students to come up with eXamples of these sorts of ideas on the land. For example: what happens in a field after the cows eat all the grass…. What do farmers need to do to let the grass grow back? It’s the same for the ocean, we need to be careful not to fish too fast so that we can all enjoy seeing and eating fish into the future! • The Blobfish in the play is based on a real fish that lives in the twilight zone of the waters off South Australia and Tasmania. Show the students a picture of the Blobfish and ask them to write a story from his perspective, about what it is like to live so deep in the sea and the sorts of creatures who might live down there with him. • A fun way to remember the play so that different elements can be discussed: In groups of 3, let each student choose a different character and put together a ‘frozen statue’ moment from the play. Then ask the rest of the class to guess which moment in the play their ‘freeze frame’ is from. • Who was your favourite character? Draw a picture of the character and talk about why he or she was your favourite. • Call of the Blobfish is a creative piece of writing. Perhaps the students could do their own piece of creative writing from the perspective of one of the characters in the play. It could be presented as a monologue, an illustrated comic strip or a short story. • There are different sea creatures in the play and their characters are all different. Ask each student to secretly choose a creature and ask them to transform into their chosen creature without using their voices. The other students have to guess which creature they are pretending to be. • The play discusses the idea of how important elders are in our communities. Ask each student to share a story that might have been told to them by their grandparent or an older person they know. Kids Story Room – http://kidsstoryroom.com COMPREHENSION AND DISCUSSION QUESTIONS/QUIZ v In what zone of the ocean does the Blobfish live? v Why was the Blobfish so important to all the other sea creatures? v Why was the Blobfish in danger? v All of the creatures in the play helped to save the Blobfish. What did they each do? Prawn? Swordfish? Tuna? Leafy-Sea? Dolphin? Sam? Fisherman? v What is a marine park and why are they important? What other areas of ocean near Australia need protection? There’s one very iconic protected area off the coast of Queensland! v Eating fish is an important part of our diet. What can we do to ensure there are lots of edible fish in the sea for many years to come? v How was the Blobfish going to be caught? Do you think anyone would want to eat him? v Why is it so important to respect and listen to our elders? v Swordfish has a sword to help him catch his food and look after himself. He started out wanting to use it to fight. What did he learn about fighting by the end of the play? v How was Sam able to breathe underwater? In real life, what help do humans need to go diving in the sea? v Apart from Sam and the Fisherman, who was the only other creature in the play that needs air to breathe? Kids Story Room – http://kidsstoryroom.com BLOBFISH Blobfish – Psychrolutes Marcidus The blobfish is a deep sea fish of the family Psychrolutidae. Their habitat is the deep waters off the coasts of mainland Australia and Tasmania. The blobfish live so deep they are rarely seen by humans. Blobfish live at depths between 600–1,200 m where the pressure is several dozen times higher than at sea level. This pressure would likely make gas bladders inefficient for maintaining buoyancy. Instead, the flesh of the blobfish is primarily a gelatinous mass with a density slightly less than water. This allows the fish to float above the sea floor without eXpending energy on swimming. Its relative lack of muscle is not a disadvantage as it primarily swallows edible matter that floats in front of it. Blobfish eat invertebrates like crabs and sea worms. Blobfish could potentially be caught by bottom trawling with nets as bycatch. Such trawling in the waters off Australia could threaten the blobfish in what may be its only habitat. Kids Story Room – http://kidsstoryroom.com TUNA Southern Bluefin Tuna - Thunnus maccoyii The Southern Bluefin Tuna is one of the sea's most impressive creatures. A beautiful and powerful fish, it is well suited to a long life endlessly swimming the open seas. An adult Bluefin grows to around 200kg and over 200cm long. Its close relative, the Northern Bluefin Tuna, Thunnus thynnus, can grow to a massive 700 kg. Tuna are true athletes of the ocean, one of the fastest ocean swimmers in the world, and often travel in speed bursts of up to 70km/hr during their migrations over thousands of kilometres of ocean. At these high speeds, the side fins retract into special grooves and the eyes form a smooth surface with the rest of the head in one of the most hydrodynamically advanced bodies in the sea. They must keep moving so that water passes over their gills, carrying oxygen to the muscle system. The slowest a tuna can swim safely to maintain the oXygen flow is to move its own length every second, faster than the fastest human swimmer at top speed. Bluefin gets their incredible physical stamina from a healthy diet of fish, squid and krill. In offshore waters, they also eat small crustaceans and much larger fish. A skilled ocean hunter, the tuna uses its highly developed senses, binocular or stereoscopic vision, extremely sensitive hearing and special chemical detectors, to hunt prey in areas where warm and cold waters meet where there is more food. Few young tuna from each female survive the perils of fishing and other hungry tuna, sharks, fish, birds, even killer whales, and return to the breeding grounds of the Indian Ocean to complete the life cycle.
Recommended publications
  • Leafy Seadragon Phycodurus Eques
    Leafy Seadragon Phycodurus eques Leafy Seadragons are a unique species of marine fish known for their ability to camouflage themselves in weedy habitats. They are South Australia’s state marine emblem and their name comes from the distinctive leafy appendages that are attached to their bodies. Closely related to seahorses and pipefish, Leafy Seadragons are in the family of animals called Syngnathidae and are a protected species under the Fisheries Management Act Bioregion resources 2007 (SA). Instead of scales, their bodies are protected by bony plates. They are smaller than the Weedy Seadragon, which is the only other seadragon species and is also found in the waters of SA. Leafy Seadragons are slow moving, and rely on their excellent camouflage to protect them from predators (they are well disguised as floating seaweed). They can also change colour depending on their age, diet, location, or stress level. Several long, sharp spines along the sides of their bodies can also help protect them from fish. They can grow to a length of 45cm but on average they are 30cm. Diet Leafy Seadragons have long, tubular snouts with small toothless mouths that suck up food. They feed on plankton, mysids and other small crustaceans and fish. Breeding They belong to one of the few groups of animals where males rear the young. Female seadragons deposit their eggs on a brood patch near the end of the males’ tail where they are fertilised on contact. Males then carry them while they develop and release tiny seadragons after four to six weeks. Mature after two years, they have a lifespan of 5–10 years.
    [Show full text]
  • Diving with Dragons
    Guidelines for Diving with Dragons explained Diving with Dragons 10 Dive right and 12 Remember the 13 Appreciate A Code of Conduct for Diving into + watch your gear ‘regs’ marine reserves 11 Respect the marine the Dragon’s Lair Know the laws relating to the taking of Marine reserves are important places. Be environment other marine organisms. If you choose aware that regulations may prohibit the to take marine animals observe all current taking of fish and other marine organisms Habitats such as seagrass meadows, regulations and take only what you need. from these areas. South Australia’s seaweed beds and sponge gardens All animals contribute to the functioning unique marine environment supports a provide shelter and food, not only for of a healthy ecosystem. Specifically rich diversity of habitats, plants and seadragons but countless other marine targeting and removing certain species animals. Marine reserves protect special organisms. A lot of these organisms and may impact upon the ecosystem as a creatures and plants that may live in or their associated habitats are very fragile. whole. Heavily dived locations are use certain areas. Marine reserves are Dive gear should be rigged and operated particularly vulnerable. Fishing also used to protect fish from human to prevent damage to this habitat. Bumps Regulations related to diving in SA can disturbance in important nursery areas, from tanks, cameras, torches or fins can be found on the PIRSA Fisheries website and help them spawn and grow. cause a lot of damage. Juvenile (www.pir.sa.gov.au). seadragons often shelter beneath fronds of seaweed and kelp, and so are vulnerable to diver disturbance, especially divers with poor buoyancy control.
    [Show full text]
  • Look at Marine Life Un Regard Sur La Vie Marine
    Alook at marine life Un regard sur la vie marine A film by Jacques Perrin AND Jacques Cluzaud Alook at marine life Un regard sur la vie marine A film by Jacques Perrin AND Jacques Cluzaud Table of contents Sommaire Map of filming locations 2 Carte des lieux de tournage Mammals 6 Mammifères Birds 12 Oiseaux Reptiles 16 Reptiles Cartilaginous fishes 18 Poissons cartilagineux Bony fishes 22 Poissons osseux Molluscs 28 Mollusques Arthropods 30 Arthropodes Jellyfishes 32 Méduses Echinoderms 32 Echinodermes Tools and cameras 34 Engins et caméras Table of filmed species 38 Inventaire des espèces filmées ince The Monkey Folk in 1989, Galatée Films has forged strong epuis Le Peuple Singe en 1989, Galatée Films a tissé des liens étroits ties with the scientific community. With Winged Migration avec la communauté scientifique. AvecLe Peuple Migrateur en 2001 S in 2001, and then with ΩCEANS, the synergy between scientific D puis avec ΩCEANS, la synergie des approches scientifiques et cinémato- and cinematographic approaches was magical. Exchanges with researchers graphiques a révélé toute sa magie. Les échanges avec les chercheurs du programme from the Census of Marine Life programme have widely enhanced our Census of Marine Life ont considérablement enrichi notre perception du monde marin, marine world perception, the sensibility of our approach, and, overall, la sensibilité de notre approche, et surtout notre connaissance des créatures marines. our knowledge of marine creatures. We shot more than 500 hours of Nous avons tourné près de 500 heures de film grâce auxquelles les scientifiques pourront footage, which will enable scientists to study, as if they were right étudier, comme s’ils y étaient, la dynamique des animaux dans leur milieu sauvage.
    [Show full text]
  • Movement, Home Range and Site Fidelity of the Weedy Seadragon
    Environmental Biology of Fishes 70: 31–41, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Movement, home range and site fidelity of the weedy seadragon Phyllopteryx taeniolatus (Teleostei: Syngnathidae) Jaime Sanchez-Camaraa & David J. Boothb aDepartment of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona 645 Diagonal Ave, Barcelona 08028, Spain (e-mail: [email protected]) bDepartment of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, NSW 2065, Australia Received 20 November 2002 Accepted 4 August 2003 Key words: common seadragon, conservation management, elastomer tagging, persistence, reproduction-related movement Synopsis We measured for the first time movement, home range and site fidelity of the protected and endemic Australian fish weedy seadragon Phyllopteryx taeniolatus. Ninety-two individuals were identified using visual implant fluorescent elastomer and studied over a one-year period. Identified animals remained at the same site over the year within limited home ranges. These home ranges and the movement patterns recorded were independent of sex although movement to shallow sheltered waters to hatch the young was observed at the end of the breeding season for some pregnant males. The site fidelity and restricted home range of the weedy seadragon, as well as the reproduction-related movement have implications for effective management of this protected species. Introduction of captive seahorses (e.g. Payne & Rippingale 2000, Woods 2000). The common or weedy seadragon Phyllopteryx One of the limitations of studying syngnathids in the taeniolatus is the only member of the genus field is that their unusual morphology of body plates Phyllopteryx (Family Syngnathidae) and, along with makes the use of long-term reliable tagging techniques the leafy seadragon Phycodurus eques, are the only difficult (Woods & Martin-Smith in press).
    [Show full text]
  • The Visual System of Seahorses and Pipefish: a Study of Visual Pigments and Other Characteristics
    The visual system of seahorses and pipefish: A study of visual pigments and other characteristics. Virginia Jan Mosk Bachelor of Science, University of Melbourne Post Graduate Diploma of Science, The University of Western Australia This thesis is presented for the degree of Master of Science THE UNIVERSITY OF WESTERN AUSTRALIA School of Animal Biology Zoology December 2004 Abstract Syngnathidae (seahorse, pipefish, pipehorses & seadragons) are highly visual feeders with different species feeding on specific types of prey, a behaviour that has been related to snout length. Worldwide, many species have become threatened by habitat destruction, collection for the aquarium trade and exploitation for traditional medicine, as well as recreational and commercial bycatch. Attempts to establish aquaculture programs have been of limited success. Little is known about their visual capabilities in detail. The visual systems of fishes are known to have evolved specific adaptations that can be related to the colour of water in which they live and specific visual tasks such as predator detection and acquisition of food. This study examined the ocular and retinal morphology, photoreceptor structure and spectral sensitivity of adult individuals of a local pipefish (S. argus), local seahorse (Hippocampus subelongatus) which both inhabit green water seagrass beds, and a tropical species of seahorse (Hippocampus barbouri) from blue water coral reefs. Some juveniles were also investigated. Accordingly, we developed an understanding of the features that are common to all syngnathids and those that have evolved for specific environments. Cryosections of the eyes were taken to determine morphological distinctions of this group. Lens characteristics measured using a spectrophotometer determined 50% cut-off wavelengths below 408nm for all 3 species, hence no transmission of UV light to the retina.
    [Show full text]
  • Page 1 of 6 Pregnant—And Still Macho: Science News Online
    Pregnant—and Still Macho: Science News Online, March 11, 2000 Page 1 of 6 Subscribe to Science News. Click OR call 1-800-552-4412. Week of March 11, 2000; Vol. 157, No. 11 Pregnant—and Still Macho Science News e-LETTER. Male seahorses allow scientists to test extreme notions of sex-role reversal Susan Milius Home page. One-half of the human race may find the idea more interesting than the other half does, but regardless, there's been plenty of speculation on what the world would be like if males were the ones who got pregnant. Visit Science News Books, our The more elaborate hypotheses— online bookstore. about warp-speed progress in obstetrics or Tiger Woods endorsing maternity clothes—have yet to receive rigorous testing. However, some of the basic theories of sexual behavior and Copyright Clearance Center sexual selection are getting attention thanks to a burst of new studies in the topsy-turvy social world of the Math Trek seahorse. Appearing pregnant even though she's A Fair Deal for not, this female potbelly seahorse Browse a Science News photo collection. Housemates acquired her name for obvious reasons. In these unusual fish, the female still This species grows to 8 inches in height in produces the eggs, but she deposits Pacific sea grass beds and rocky reefs Food for Thought them into a pouch in her mate's body. near Australia and New Zealand. Males Sickening Food Then she swims away, returning only need about 20 days to complete a pregnancy. This seahorse is part of a for 5 to 10 minutes once a day during popular exhibit at Chicago's Shedd Science Safari his several weeks of pregnancy.
    [Show full text]
  • P. 1 Doc. 11.36 CONVENTION on INTERNATIONAL TRADE
    Doc. 11.36 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eleventh meeting of the Conference of the Parties Gigiri (Kenya), 10-20 April 2000 Interpretation and implementation of the Convention TRADE IN SEAHORSES AND OTHER MEMBERS OF THE FAMILY SYNGNATHIDAE 1. This document has been submitted by the United States of America and Australia. The Secretariat is grateful to the United States of America for providing the Spanish translation and to Australia for providing the French translation. Purpose 2. The intent of the United States and Australia in requesting that this issue be discussed by the Conference of the Parties is to: a) establish dialogue between Party members, concerned scientists, interested industry members, and communities; b) further encourage continued research to clarify taxonomic discrepancies and compile species distribution and demographic data; and c) further encourage the collection of data quantifying international trade, documenting catches by species, as well as data that will provide the best information about the current status of these species and impact trade has on syngnathid populations and their environments. Introduction 3. At the present time, there is no international organization or body responsible for management of seahorses and other syngnathids, including recommendations on catch quotas, gear restrictions, minimum sizes, or temporal and spatial closures of near-shore fishing environments. Significant work is being conducted with some local communities, scientists and industry by Project Seahorse, led by Dr. Amanda Vincent of McGill University, Canada. The United States and Australia believe that discussion of actions that are necessary to collect trade data and determine the impacts of trade on seahorse and other syngnathid populations is essential at this time, in an effort to determine the validity of anecdotal information that populations are being harmed by excessive harvest and trade.
    [Show full text]
  • First Live Records of the Ruby Seadragon (Phyllopteryx Dewysea, Syngnathidae) Greg W
    Rouse et al. Marine Biodiversity Records (2017) 10:2 DOI 10.1186/s41200-016-0102-x MARINE RECORD Open Access First live records of the ruby seadragon (Phyllopteryx dewysea, Syngnathidae) Greg W. Rouse1* , Josefin Stiller1 and Nerida G. Wilson1,2,3 Abstract Until recently, only two species of seadragon were known, Phycodurus eques (the leafy seadragon) and Phyllopteryx taeniolatus (the common seadragon), both from Australia. In 2015, we described a new species of seadragon, Phyllopteryx dewysea (the ruby seadragon). Although the leafy and common seadragons are well known and commonly seen in aquarium exhibits world-wide, the ruby seadragon was known only from four preserved specimens, leaving many aspects of its biology unknown. Based on specimen records, it was speculated that the ruby seadragon normally lives at depths beyond recreational SCUBA diving limits, which may also explain why it went undiscovered for so long. The rubyseadragonalsobearsasuperficialresemblancetothecommonseadragon,withanumberofspecimens misidentified in museum collections. The only recent live-collected specimen was trawled from the Recherche Archipelago, a cluster of over 100 islands in Western Australia. We took a small remotely operated vehicle (miniROV) to this locality to obtain the first images of live ruby seadragons. We made observations on the seadragon habitat and behavior, including feeding. We also provide new key observations on their morphology, notably that they lack dermal appendages and have a prehensile tail. We recommend that the ruby seadragon be protected as soon as practicable. Keywords: Australia, Biodiversity, Marine, Syngnathid, Seadragon Background (Kuiter 2000). Although the museum specimens of Theoriginaldescriptionoftherubyseadragon(Phyllopteryx ruby seadragons possessed the enlarged bony spines dewysea, Stiller, Wilson and Rouse 2015) was based on four to which these appendages attach in the other spe- specimens, three from near Perth in Western Australia.
    [Show full text]
  • Exploitation and Trade of Australian Seahorses, Pipehorses, Sea Dragons and Pipefishes (Family Syngnathidae)
    Oryx Vol 40 No 2 April 2006 Exploitation and trade of Australian seahorses, pipehorses, sea dragons and pipefishes (Family Syngnathidae) Keith M. Martin-Smith and Amanda C.J. Vincent Abstract Seahorses and their syngnathid relatives have both volume and value. Research is urgently needed provided a focus for efforts to ensure sustainable use of to evaluate the impacts and sustainability of trawling marine resources, with new international trade controls on pipehorse populations. Australia is also the sole (CITES Appendix II) implemented in May 2004. We dem- supplier of two sea dragon species, Phycodurus eques onstrate how a study of international trade can be used to and Phyllopteryx taeniolatus, for the live aquarium trade. assess relative levels of threat and set domestic research Although lucrative, the number of wild-caught indi- and conservation priorities. Australia has remarkably viduals involved in this trade was relatively low and high syngnathid biodiversity with at least 14 seahorse probably of low conservation risk relative to habitat species, two endemic sea dragon species, and 90 species loss. Exports of seahorses and other pipefish species, and of pipefishes and pipehorses found in its territorial imports of all syngnathid species, are minor on a global waters. Our objectives were to quantify species, trade scale, although the burgeoning aquaculture industry for routes, volumes, values and temporal trends in syngna- seahorses requires careful evaluation for its potential thid trade to and from Australia. We found that Australia impacts on wild populations. is probably the major global supplier of dried pipehorses Solegnathus spp.. These fishes, including at least one Keywords Aquaculture, aquarium, bycatch, exports, endemic species, are sourced from trawl bycatch and imports, pipefish, pipehorse, sea dragon, Syngnathidae, comprise Australia’s largest syngnathid export, by traditional medicine.
    [Show full text]
  • Review of the South Coast Marine Areas for Reservation 2021
    A review of the south coast marine environment and proposed areas for state marine reservation between Albany and Eucla, Western Australia Alicia Sutton and Paul Day Carijoa Marine Consulting June 2021 Prepared for the Department of Biodiversity, Conservation and Attractions, Western Australia Citation Sutton, A. L. and Day, P.B. 2021. A review of the south coast marine environment and proposed areas for state marine reservation between Albany and Eucla, Western Australia. Report prepared for the Department of Biodiversity, Conservation and Attractions, Western Australia. Carijoa Marine Consulting, Fremantle, WA. 170pp. Acknowledgments The Department of Biodiversity, Conservation and Attractions are thanked for their collective knowledge and review of this report. We would like to acknowledge the following scientific experts for their engagement with this review: Kirsty Alexander, Kevin Bancroft, Geoff Bastyan, Neville Barrett, Lynnath Beckley, Sahira Bell, Charlotte Birkmanis, Russ Bradford, Chris Burton, Marion Cambridge, Fredrik Christiansen, Michael Cuttler, Brett Dalpozzo, Alma de Rebeira, Graham Edgar, Ian Eliot, Jane Fromont, James Fitzsimmons, Daniel Gaughan, Chris Gillies, Jordan Goetze, Euan Harvey, Michelle Heupel, Alistair Hobday, John Huisman, Curt Jenner, Micheline Jenner, Alan Kendrick, Gary Kendrick, Lisa Kirkendale, Tim Langlois, Ryan Lowe, Robert McCauley, Kathryn McMahon, Jessica Meeuwig, Glenn Moore, Kathy Murray, Mick O’Leary, Sylvia Osterrider, Harriet Paterson, Bianca Priest, Angela Recalde-Salas, Chandra Salgado Kent, Josh Smith, Conrad Speed, Ana Sequiera, Kate Sprogis, Rick Stuart-Smith, Chris Surman, Ralph Talbot Smith, Fiona Valesini, Paul Van Ruth, Di Walker, Kelly Waples, Rebecca Wellard, Nerida Wilson, Fred Wells and the Department of Primary Industries and Regional Development (DPIRD). O2 Marine are thanked for providing assistance with map production.
    [Show full text]
  • When & How Did Seahorses Evolve?
    !"#"#$% !"#$%&'"'()*(+",#-."'/(!$%0(1#&"23#,(4#&"( 5$"2(*($%0(676('"#$%&'"'(".%,."8( @A(?1%>'5/B?A% C/D<)/E%/77?%F/1G//6%5/)H'0%B6?% KA<1%13<'1?%I(%1A/%D/DF/3?% (L%1A'?%L<D')M%?A<3/N% 4A(31A/<I%4/<A(3?/% J<)/E%/77?%'6%5(20A%(6%1<')% &'()*%+#,-%./0123/%#!-%453'67% &<6I/I%>'5/B?A% J(I'B/I%L3(D%O/?P/%Q% J<)/E%/77?%(6%<FI(D/6% 89#$-%:3*%;<3/6%=*%>/1/3?/6%% &/A/3/7<3<M-%899R% 4%9:#&"(3$"(3&"26'(72(3$"(9#,"(;&%%6(:%<=$( @"'=&7;"(3$"(A<2=-%2(%A(B"C(9#,"($%&9%2"'D(( 6"'7>2'(72('"#$%&'"'(*(:7:"?'$( ZM5(1A/?'V/I%5'12'1<3M%Q%?1/3('I%A(3D(6/?%'6%F3//I'67%D<)/%?M676<1A'I%% 4/<A(3?/?% 41()T67%Q%K')?(6-%899,% UWO%X%U37'6'6/%H<?(1(0'6% YO%X%'?(1(0'6% K//IM%>'5/B?A% S3(5A(3'E% 1<')%F3((I/3% @<?13(5A(3'E% &<6I/I%>'5/B?A% UFI(D'6<)% F3((I/3% @A(?1%>'5/B?A% A[5E""G6*0(D"?/<A(3?/\D<T67\I<60/%% 40(F/))%Q%J<0;/6V'/-%89##% #% !"#"#$% E<,-:,"(9#3"&273C(0#'(&#&"(72(:&">2#23(9#,"( G&"(3$"&"( @(60<)H/?-%UA6/?-%Q%;H<36/D(-%89#$% F%&3$"&2(17:"?'$(!"#$#%&'()*+(),()( #6.#23#>"'(3%( ;&%%672>( =%9:#&39"23'( A%&(3$"(">>'8( 4<D5)/I%D'03(?<1/))'1/%:_U% &)<0PE%L2))%?'F-%@3<ME%A<)L%?'F% _(3D(c'<%d#99b%`8%?<1*e% ZM5(c'<%d+9b%`8%?<1*e% `6)M%8ab%D<1/I% G'1A%8%L/D<)/?% ><0V()1-%J<3T6-%]<[/3D<6-%Q%^(6/?-%89#$% 5$#3(#&"(3$"(=%'3'( I%0(#&"(">>'(A"&-,7J"6(*(3&#2'A"&&"6( 723%(3$"(9#,"('"#$%&'"K'(:%<=$8( %A(;&%%672>(A%&( g/))(G%?/<A(3?/%d40<)/%F<3%8%DDe% C/D<)/%`H'5(?'1(3% %4:`%X%?5/3D%I201%(5/6'67-%UC%X%<6<)%B6%% 9#,"(H<,A(17:"?'$8( 4C%X%?P'6%L()I-%>`%X%5(20A%(5/6'67*%% ><0V()1%Q%^(6/?-%89#!% ><0V()1%Q%^(6/?-%89#!% =<3)'/3%G(3P%FM%><0V()1%Q%^(6/?-%89#9E% J<)/?%I'I6f1%G<61%1(%D<1/%G'1A%?D<))%
    [Show full text]
  • Leafy Sea Dragons Are Very Interesting to Watch-- the Leafy Appendages Are Not Used for Movement
    Yankalilla Yankalilla Visitor Information Centre The Leafy Sea Dragon Sea Dragons are arguably the most spectacular and mysterious of all ocean fish. Though close relatives of sea horses, sea dragons have larger bodies and leaf-like appendages which enable them to hide among floating seaweed or kelp beds. Sea dragons feed on larval fishes and amphipods, such as and small shrimp-like crustaceans called mysids ("sea lice"), sucking up their prey in their small mouths. Many of these amphipods feed on the red algae that thrives in the shade of the kelp forests where the sea dragons live. As with their smaller common seahorse (and pipefish) cousins, the male sea dragon carries and incubates the eggs until they hatch. During mating the female deposits up to 250 eggs onto the "brood patch" on the underside of the male's tail. After about eight weeks, the brood hatches, but in nature only about 5 per cent of sea dragons survive to maturity (two years). A fully grown Leafy Sea Dragon grows to about 18 inches (45 cm). Leafy Sea Dragons are very interesting to watch-- the leafy appendages are not used for movement. The body of a sea dragon scarcely appears to move at all. Steering and turning is through movement of tiny, translucent fins along the sides of the head (pectoral fins, visible above) and propulsion derives from the dorsal fins (along the spine). Their movement is as though an invisible hand were helping, causing them to glide and tumble in peculiar but graceful patterns in slow-motion. This movement appears to mimic the swaying movements of the seaweed and kelp.
    [Show full text]