Chapter 1 the Achievement of Flight
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shelf List 05/31/2011 Matches 4631
Shelf List 05/31/2011 Matches 4631 Call# Title Author Subject 000.1 WARBIRD MUSEUMS OF THE WORLD EDITORS OF AIR COMBAT MAG WAR MUSEUMS OF THE WORLD IN MAGAZINE FORM 000.10 FLEET AIR ARM MUSEUM, THE THE FLEET AIR ARM MUSEUM YEOVIL, ENGLAND 000.11 GUIDE TO OVER 900 AIRCRAFT MUSEUMS USA & BLAUGHER, MICHAEL A. EDITOR GUIDE TO AIRCRAFT MUSEUMS CANADA 24TH EDITION 000.2 Museum and Display Aircraft of the World Muth, Stephen Museums 000.3 AIRCRAFT ENGINES IN MUSEUMS AROUND THE US SMITHSONIAN INSTITUTION LIST OF MUSEUMS THROUGH OUT THE WORLD WORLD AND PLANES IN THEIR COLLECTION OUT OF DATE 000.4 GREAT AIRCRAFT COLLECTIONS OF THE WORLD OGDEN, BOB MUSEUMS 000.5 VETERAN AND VINTAGE AIRCRAFT HUNT, LESLIE LIST OF COLLECTIONS LOCATION AND AIRPLANES IN THE COLLECTIONS SOMEWHAT DATED 000.6 VETERAN AND VINTAGE AIRCRAFT HUNT, LESLIE AVIATION MUSEUMS WORLD WIDE 000.7 NORTH AMERICAN AIRCRAFT MUSEUM GUIDE STONE, RONALD B. LIST AND INFORMATION FOR AVIATION MUSEUMS 000.8 AVIATION AND SPACE MUSEUMS OF AMERICA ALLEN, JON L. LISTS AVATION MUSEUMS IN THE US OUT OF DATE 000.9 MUSEUM AND DISPLAY AIRCRAFT OF THE UNITED ORRISS, BRUCE WM. GUIDE TO US AVIATION MUSEUM SOME STATES GOOD PHOTOS MUSEUMS 001.1L MILESTONES OF AVIATION GREENWOOD, JOHN T. EDITOR SMITHSONIAN AIRCRAFT 001.2.1 NATIONAL AIR AND SPACE MUSEUM, THE BRYAN, C.D.B. NATIONAL AIR AND SPACE MUSEUM COLLECTION 001.2.2 NATIONAL AIR AND SPACE MUSEUM, THE, SECOND BRYAN,C.D.B. MUSEUM AVIATION HISTORY REFERENCE EDITION Page 1 Call# Title Author Subject 001.3 ON MINIATURE WINGS MODEL AIRCRAFT OF THE DIETZ, THOMAS J. -
South Bay Historical Society Bulletin October 2018 Issue No
South Bay Historical Society Bulletin October 2018 Issue No. 21 RSVP today to visit Ream Field on Friday! Ream Field, A History part of the short-lived boom town of Oneonta in the 1880s. One advantage of the area was good weather. by Steve Schoenherr Aviation enthusiasts could experiment with their One hundred years ago, the Great War transformed machines all year, taking advantage of the gentle the South Bay. Farms and lemon groves covered ocean winds and the occasional gusts from the inland most of the sparsely populated area. Only a few deserts in the fall. John Joseph Montgomery was the hundred people lived in the area between the border first American to design and fly a controlled glider, and the bay. Imperial Beach was just a small strip of making his flight in 1883 from a hill on Otay Mesa land three blocks wide along the ocean. Hollis above his father's ranch at the southern end of San Peavey raised hay and barley on his 115-acre ranch Diego Bay. In 1910 Charles Walsh built a biplane in on the north bank of the Tijuana River that had been Imperial Beach and made his first public flight on 1 Charles Walsh at Aviation Field in 1910. Note the South San Diego School in the upper right that was built at Elm and 10th Street in 1889. April 10, cheered on by a crowd of about a hundred wanted to give his flying school to the Navy, but in spectators. In the following weeks, similar flights 1912 the Army took up his offer instead. -
MS-1 PART III Photographs
MS-1: Wright Brothers Collection PART III WRIGHT FAMILY PHOTOGRAPH COLLECTION This series includes many original photographic prints made by the Wrights from their own negatives shortly after the images were taken. The Wrights exposed at least 303 gelatin dry plate negatives in the course of documenting their process of invention. All of their glass plate negatives were given to the Library of Congress in 1949, but many of their original prints remained with the Estate of Orville Wright. Many of the Wright Brothers’ original negatives were damaged in Dayton’s great flood of 1913, when they were submerged for up to four days. The Wright State University collection includes some images for which no negatives exist at the Library of Congress and so many of these prints are unique. In addition, this collection includes hundreds of prints collected by the Wrights through their association with other aviation pioneers such as Octave Chanute, and a great variety of aeronautical prints either collected by them, or sent to them by well-wishers through the years. While the major prints exist in both collections, both the Wright State University collection and the Wright collection in the Prints and Photographs Division of the Library of Congress contain many images that are unique to each collection. Wilbur and Orville Wright began photographing their experiences on the Outer Banks using a 4 x 5 inch dry plate camera. In 1902 they purchased a Korona view camera which used 5 x 7 inch dry plates. They developed their negatives and made prints in the darkroom they set up at their home in Dayton. -
Aviation March 2010 Central Illinois Teaching with Primary Sources Newsletter
Aviation March 2010 Central Illinois Teaching with Primary Sources Newsletter EASTERN ILLINOIS UNIVERSITY SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE CONTACTS Ready for Take Off:Aviation • Melissa Carr [email protected] Editor • Cindy Rich [email protected] • Amy Wilkinson [email protected] INSIDE THIS ISSUE: Topic Introduction 2 Connecting to Illinois 3 Learn More with 4 American Memory In the Classroom 5 Test Your Knowledge 6 Images Sources 7 eiu.edu/~eiutps/newsletter Page 2 Aviation Ready for Take Off: Aviation Welcome to the 29th issue of the Central Illinois authority, Wilbur writes, “For some years I have been Teaching with Primary Sources Newsletter a afflicted with the belief that flight is possible to man.” collaborative project of Teaching with Primary Sources The Wright brothers spent many years researching the Programs at Eastern Illinois University and Southern early studies of flight such as balloons, kites and gliders. Illinois University Edwardsville. This school year we want They designed a wind tunnel generating almost 12 to bring you topics that connect to the Illinois Learning horsepower to test the shape of gliders. Based on their Standards as well as provide you with amazing items research, the Wright brothers constructed their first from the Library of Congress. plane called the “Flyer” which weighed 605 pounds. On Aviation is not specifically mentioned within the ISBE December 17, 1903, Orville Wright piloted the first heavier-than-air flight. The flight lasted 12 seconds and Learning Standards. However, items pertaining to aviation such as invention are mentioned for the flew 120 feet. These early flights by the Wright brothers following Illinois Learning Standards (found within goal, are the foundation for flight as we know it today. -
The Aerodynamic Design of Wings with Cambered Span Having Minimum Induced Drag
https://ntrs.nasa.gov/search.jsp?R=19640006060 2020-03-24T06:40:56+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server TR R-152 NASA- ..ZC_ L mm-4 -0-= I NATIONAL AERONAUTICS AND -----I- SPACE ADMINISTRATION LC)A~\c;i)p E AFW Wm* EP1 KIRTLANi =$= MS; TECHNICAL REPORT R-152 THE AERODYNAMIC DESIGN OF WINGS WITH CAMBERED SPAN HAVING MINIMUM INDUCED DRAG BY CLARENCE D. CONE, JR. 1963 ~ For -le by the Superintendent of Documents. US. Government Printing OIBce. Wasbingbn. D.C. 20402. Single copy price, 35 cents TECH LIBRARY KAFB, NM 00b8223 TECHNICAL REPORT R-152 THE AERODYNAMIC DESIGN OF WINGS WITH CAMBERED SPAN HAVING MINIMUM INDUCED DRAG By CLARENCE D. CONE, JR. Langley Research Center Langley Station, Hampton, Va. I CONTENTS Page SU~MMARY-________._...-.--..--.---------------------------------------- 1 INTRODUCTION __.._.._..__..___..~___.__._.._....~....~~-_--~~--~-------1 SYMBOLS___._____.___------.----------.---.--.---.---------------.--.--- 2 THE ])RAG POLAR OF CAMBERED-SPAN WINGS-_- - ...______________.__ 3 PROPERTIES OF CAMBERED WINGS HAVING MINIMUM INDUCED DRAG_._.._.___.~._.___~_._.___.._.____..__.__.-~~_-~---_---~~---------4 The Optimum Circulation IXstribution.. - -.- - -.- - - - - - - - - - - - - - - -.- - - - - - -.- - 4 The Effective Aspect Ratio ______________._._._____________________------5 THE DESIGN OF CAMBERED WINGS ____________________________________ 6 I>et,erininationof the Wing Shape for Maximum LID- - -.--_-___-___-___--__ 7 Specification of design requirements- - - - - - - - - - - - - - - -.-. - - - - - - - - - - - - - - - - 8 1)eterniination of minimum value of chord function- - - -.- - - - - - - - - - - - - - 8 Determination of wing profile-drag coefficient and optimum chord function- - 9 The optimum cruise altitude- -. -
10. Supersonic Aerodynamics
Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited. -
N AL ADVISORY COMMITTEE for AERONAUTICS WASHINGTON July 12, 1957 NACA RM L57e24a
SOME FACTORS AFFECTING THE'STATIC LONGITU DIRECTIONAL STABILITY CHARACTEXISTICS OF SUPERSONIC AIRCRAFT CONFIGURATIONS By M. Leroy Spearman Langley Aeronautical Laboratory Langley Field, Va. N AL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON July 12, 1957 NACA RM L57E24a NATI SOME FACTORS AFFECTING TflE STATIC LONGITUDINAL AND DIRECTIONAL STABILITY CHARACTERISTICS OF SUPERSONIC AIRCRAFT CONFIGURATIO~S By M. kroy Spearman SUMMARY A survey is made of the problems introducei by Le ,,icreased -0ngi- tudinal stability and the reduced directional stability of aircraft operating in the low supersonic speed range. The longitudinal stability increases markedly at supersonic speeds and results in high drags due to trimming and in limited control for maneuvering. The large untrimmed pitching moments can be reduced and the control requirements alleviated to some extent through the use of fuselage camber. The use of canard configurations offers some promise of reducing the drag due to trimming and increasing the controllhbility. The directional stability generally deteriorates rapidly at super- sonic speeds because of the reduction in vertical-tail lift-curve slope coupled with the large unstable yawing moment of the fuselage. The vertical-tail contribution is shown to be affected by many factors including the wing position, the fuselage shape, and the horizontal-tail position. The directional stability can be increased, particularly at high angles of attack, by such devices as ventral fins and forebody strakes. In addition, indications are that the directional stability might be improved through modifications to the fuselage afterbody. INTRODUCTION Aircraft advancing from subsonic to low supersonic speeds frequently encounter performance and control problems as a result of significant changes in static stability characteristics. -
Further Devels'nent Ofthe Tunny
FURTHERDEVELS'NENT OF THETUNNY RIG E M H GIFFORDANO C PALNER Gi f ford and P art ners Carlton House Rlngwood Road Hoodl ands SouthamPton S04 2HT UK 360 1, lNTRODUCTION The idea of using a wing sail is not new, indeed the ancient junk rig is essentially a flat plate wing sail. The two essential characteristics are that the sail is stiffened so that ft does not flap in the wind and attached to the mast in an aerodynamically balanced way. These two features give several important advantages over so called 'soft sails' and have resulted in the junk rig being very successful on traditional craft. and modern short handed-cruising yachts. Unfortunately the standard junk rig is not every efficient in an aer odynamic sense, due to the presence of the mast beside the sai 1 and the flat shapewhich results from the numerousstiffening battens. The first of these problems can be overcomeby usi ng a double ski nned sail; effectively two junk sails, one on either side of the mast. This shields the mast from the airflow and improves efficiency, but it still leaves the problem of a flat sail. To obtain the maximumdrive from a sail it must be curved or cambered!, an effect which can produce over 5 more force than from a flat shape. Whilst the per'formanceadvantages of a cambered shape are obvious, the practical way of achieving it are far more elusive. One line of approach is to build the sail from ri gid componentswith articulated joints that allow the camberto be varied Ref 1!. -
Wings of Their Dreams: Purdue in Flight, Second Edition John Norberg
Purdue University Purdue e-Pubs Purdue University Press Book Previews Purdue University Press 10-2019 Wings of Their Dreams: Purdue in Flight, Second Edition John Norberg Follow this and additional works at: https://docs.lib.purdue.edu/purduepress_previews Part of the History Commons This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. THE FOUNDERS SERIES The Founders Series publishes books on and about Purdue University, whether the physical campus, the University’s impact on the region and world, or the many visionaries who attended or worked at the University. Other recent titles in this series: Ever True: 150 Years of Giant Leaps at Purdue University John Norberg Purdue at 150: A Visual History of Student Life David M. Hovde, Adriana Harmeyer, Neal Harmeyer, and Sammie L. Morris Memories of Life on the Farm: Through the Lens of Pioneer Photographer J. C. Allen Frederick Whitford and Neal Harmeyer A Purdue Icon: Creation, Life, and Legacy James L. Mullins Scattering the Seeds of Knowledge: The Words and Works of Indiana’s Pioneer County Extension Agents Frederick Whitford Enriching the Hoosier Farm Family: A Photo History of Indiana’s Early County Extension Agents Frederick Whitford, Neal Harmeyer, and David M. Hovde The Deans’ Bible: Five Purdue Women and Their Quest for Equality Angie Klink For the Good of the Farmer: A Biography of John Harrison Skinner, Dean of Purdue Agriculture Frederick Whitford A University of Tradition: The Spirit of Purdue, Second Edition Purdue Reamer Club Just Call Me Orville: The Story of Orville Redenbacher Robert W. -
Aerodynamic Study of a Two-Elements Wingsail for High Performance Multihull Yachts
Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 15683 To cite this version : Chapin, Vincent and Gourdain, Nicolas and Verdin, Nicolas and Fiumara, Alessandro and Senter, Julien Aerodynamic study of a two-elements wingsail for high performance multihull yachts. (2015) In: High Performance Yacht Design, 10 March 2015 - 12 March 2015 (Auckland, New Zealand). (Unpublished) Any correspondence concerning this service should be sent to the repository administrator: [email protected] 5th High Performance Yacht Design Conference Auckland, 10-12 March, 2015 AERODYNAMIC STUDY OF A TWO-ELEMENTS WINGSAIL FOR HIGH PERFORMANCE MULTIHULL YACHTS Vincent Chapin1, Nicolas Gourdain2, Nicolas Verdin3, Alessandro Fiumara4, Julien Senter5 Corresponding author : [email protected] Abstract. this paper is devoted to the numerical study of a 1:20th model-scale wingsail typical of America’s Cup yachts like AC72, AC62, AC45 or any C class catamaran to gain insight in its complex aerodynamic behavior and to prepare a wind-tunnel campain. This rigging has still not been much studied and needs more knowledge. This study is based on CFD simulations of the flow around the wingsail by resolving Navier-Stokes equations. Two modeling issues are investigated: the Unsteady Reynolds Average Navier-Stokes (URANS) and the Large Eddy Simulation (LES). These numerical approaches are used to characterize the wingsail aerodynamic behavior and variations with some key design and trim parameters (camber, slot width, angle of attack, flap thickness). -
Octave Chanute (1999) (1832-1910)
OCTAVE CHANUTE (1999) (1832-1910) Octave Chanute was possibly the first person to publicly promote the sport of gliding and soaring in the United States of America. In September 1896 a Chicago Tribune reporter quoted him as saying, “. With the high wind the practice was full of excitement for beholders. The devices showed several capers while still under control which were new to their riders.. .” In 1897 the Chicago Sunday Times Herald reported, “If the spectator is daring enough to tackle the machine himself and succeeded in getting the right kind of start, he would be willing to take the oath that the machine flew. He would also be willing to testify that his sensations while the flight lasted were indescribably thrilling and delightful. .” We, in the modern era, can relate to these feelings! Octave Chanute was born in France in 1832 and emigrated to the United States with his father in 1838. He began his training as a civil engineer ten years later in 1848. His early career was involved with bridges, stockyards and railroads. However, in 1856 he saw a balloon take off in Peoria, IL. He didn't catch the bug just then but, in 1883, when he retired from his railroad profession, he decided to spend some time furthering this new science of aviation. He collected all the data he could find from throughout the world and combined it with his background in civil engineering to produce a series of articles in The Railroad and Engineering Journal from 1891 to 1893 – re-published in the book Progress in Flying Machines in 1894. -
History and Heritage Newsletter November 2012, Volume VI, No
History and Heritage Newsletter November 2012, Volume VI, No. 6 Banner Images for November What bridge am I and who built me? Who am I? Banner Images from September Issue The bridge was the Fraser River Bridge designed by C. Conrad Schneider, President of the ASCE in 1905. It was designed prior to the Niagara Cantilever Bridge by Schneider but the Niagara Bridge was built first due to the late delivery of the iron that had to be shipped from England for the Fraser River Bridge. The two bridges were the first cantilever bridges with a suspended span between the two river piers. A cantilever Fraser River Cantilever, 1884 to 1910 was chosen, as it was impossible to place falsework in the river upon which to build a simple span truss bridge. The Fraser River Bridge finally opened in 1884. It was removed in 1910 and rebuilt over the Niagara Creek and is now called the Frisco Bridge. Charles C. Schneider, President ASCE 1905 The engineer was George S. Morison, President ASCE 1895. He was born in New Bedford, Massachusetts in 1842 and attended Phillips Exeter and Harvard University. He trained to be a lawyer and was admitted to the Bar but chose to pursue a career in civil engineering. His first position was with Octave Chanute on the construction of the Missouri River Bridge. He followed Chanute to the Erie Railroad, which was upgrading its track and bridges. After a fire destroyed the Portage Bridge across the Genesee Gorge near Rochester, he replaced it with an iron bridge within 86 days.