Program of Technical Sessions

Total Page:16

File Type:pdf, Size:1020Kb

Program of Technical Sessions PROGRAM OF TECHNICAL SESSIONS NASA JOHNSON SPACE CENTER FORTY-SECOND LUNAR AND PLANETARY SCIENCE CONFERENCE Program of Technical Sessions March 7–11, 2011 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas Sponsored by Lunar and Planetary Institute NASA Johnson Space Center Additional Support Provided by Northrup Grumman Aerospace Systems Conference Co-Chairs Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center Program Committee Oleg Abramov, Lunar and Planetary Institute Jack Holt, University of Texas Neyda Abreu, Pennsylvania State University Peter Isaacson, Brown University Mike A’Hearn, University of Maryland Katherine Joy, Lunar and Planetary Institute Mary Sue Bell, Jacobs Engineering Jim Lyons, University of California, Los Angeles Michael Bland, Washington University Francis McCubbin, University of New Mexico Veronica Bray, University of Arizona/Lunar and Pat McGovern, Lunar and Planetary Institute Planetary Laboratory Lan-Anh Nguyen, Jacobs Engineering Debra Buczkowski, Johns Hopkins Paul Niles, NASA Johnson Space Center University/Applied Physics Laboratory Andy Rivkin, Johns Hopkins University/ Emma Bullock, Smithsonian Institution Applied Physics Laboratory Cari Corrigan, Smithsonian Institution Paul Schenk, Lunar and Planetary Institute Brad De Gregorio, NASA Johnson Space Center Andy Shaner, Lunar and Planetary Institute Dave Draper, NASA Johnson Space Center Stephanie Shipp, Lunar and Planetary Institute Denton Ebel, American Museum of Justin Simon, NASA Johnson Space Center Natural History Tim Titus, U.S. Geological Survey Justin Filiberto, Rice University David Van Acken, University of Houston Qi Fu, Lunar and Planetary Institute Channon Visscher, Lunar and Planetary Institute Gerald Galgana, Lunar and Planetary Institute Justin Wilkinson, NASA Johnson Space Center Juliane Gross, Lunar and Planetary Institute Axel Wittmann, Lunar and Planetary Institute John Gruener, NASA Johnson Space Center Rose Hayward, U.S. Geological Survey Produced by the Lunar and Planetary Institute (LPI), 3600 Bay Area Boulevard, Houston TX 77058-1113. Logistics, administrative, and publications support for the conference were provided by the Meeting and Publication Services Department of the LPI. The LPI is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. LIST OF EXHIBITORS Arkansas Center for Space and Bruker Nano Planetary Sciences 1239 Parkway Avenue, Suite 203 FELD 202, Old Museum Building Ewing, NJ 08628 The University of Arkansas Contact: Donald Becker Fayetteville, AR 72701 609.771.4473 Contact: Hazel Sears [email protected] 479.575.3439 Bruker Nano is the undisputed leader in silicon drift detector [email protected] (SDD) technology for X-ray microanalysis. The QUANTAX Meteorite magazine serves as a forum for communication EDS system provides comprehensive microanalysis capability between amateurs, collectors, dealers, meteorite hunters, including rapid X-ray spectrum imaging with data mining and educators, and researchers interested in meteorites. It publishes AutoPhase analysis as well as integrated feature analysis with articles on meteorites, meteorite recovery, personalities in the high-speed chemical classifi cation. The CrystAlign EBSD system meteorite fi eld, and the latest news and discoveries concerning integrates seamlessly with QUANTAX to provide simultaneous meteorites and their origins. Now in its sixteenth year of crystallographic information. The M4 µXRF system provides publication, the magazine publishes quarterly in February, May, fastest data acquisition with excellent spatial resolution due to August, and November. See http://meteoritemag.uark.edu/ for its advanced capillary optics. more information or contact [email protected] (business) or [email protected] (content). Center for Lunar Science and Exploration 3600 Bay Area Boulevard Boeing Company Houston TX 77058-1113 7700 Boston Boulevard Contact: Julie Tygielski Springfi eld, VA 22153 281.486.2122 Contact: Lisa Mercado [email protected] 703.270.6787 The Center for Lunar Science and Exploration is a division [email protected] of the Lunar and Planetary Institute (LPI) and shares in LPI’s Nearly a century of expertise and continuing innovation make rich heritage dating back to the Apollo missions. The LPI Boeing the leader in the aerospace and defense industry. and Johnson Space Center harnessed that heritage to build Boeing combines global resources and a spirit of innovation the Center to better support our nation’s lunar science and to provide best-of-industry, network-enabled solutions to exploration activities. military, government, and commercial customers around the world. Boeing also is the world’s largest satellite manufacturer, an emerging leader in support systems and services, and a Ernest H Stegeman Publishing leading global supplier of human space exploration systems and P. O. Box 330 services. Eureka, CA 95502 Contact: Ernest H Stegeman 707.822.1597 [email protected] Self-published independent geologic research. Current research is focused on the Hudson Bay centered astrobleme. Isotopx Lockheed Martin Space Systems Company 93 Old Farm Road P. O. Box 179, Mail Stop S8110 Mansfi eld, MA 02048 Denver, CO 80201 Contact: Laurie Lischer Contact: Melissa Croswhite 508.337.8467 303.971.9646 [email protected] [email protected] Isotopx is a manufacturer of state-of-the-art Thermal Ionization Expanding our knowledge and understanding of the universe is Mass Spectrometers, which are used throughout the world a challenging endeavor that Lockheed Martin has been actively for the highest precision and accuracy in isotope ratio engaged in for nearly fi ve decades. We have developed and measurements on terrestrial as well as extraterrestrial samples. deployed numerous spacecraft and products supporting our We look forward to meeting customers and friends in Houston. understanding of Earth and planetary science, heliophysics, and astrophysics. We’re accountable to one standard — 100 percent mission success. We understand the risks and will not shy away Jacobs Technology from the hard challenges associated with this mission. 2224 Bay Area Boulevard Houston, TX 77058 Contact: Sara Robertson Lunar and Planetary Institute 3600 Bay Area Boulevard 281.483.5014 Houston TX 77058-1113 [email protected] Contact: Julie Tygielski Jacobs Technology is the advanced technology division of 281.486.2122 Jacobs Engineering, one of the nation’s largest engineering [email protected] and technical services-only companies. With 70+ years of experience supporting government and commercial clients, The Lunar and Planetary Institute is a nonprofi t organization we have earned a reputation for excellence and outstanding whose focus is on academic participation in studies of the technical and managerial achievements in quality, performance, current state, evolution, and formation of the solar system. and safety. Our clients include the DOD, NASA, the U.S. Special The Institute is managed by the Universities Space Research Operations Command, the DOE, and dozens of commercial Association (USRA). USRA/LPI seeks to foster scientifi c discovery clients, such as Boeing, Lockheed Martin, Rolls-Royce, and while inspiring the next generation. General Motors. Lunar and Planetary Institute JHU/Applied Physics Laboratory 3600 Bay Area Boulevard 11100 Johns Hopkins Road Houston, TX 77058 Laurel, MD 20723 Contact: Mary Ann Hager Contact: Margaret Simon 281.486.2136 240.228.7150 [email protected] [email protected] LPI outreach service — Helping you change planetary science The Johns Hopkins University’s Applied Physics Laboratory in entries in Wikipedia. Laurel, Maryland, makes critical contributions to our nation’s critical challenges by applying academic research to science and technology problems. APL has launched over sixty spacecraft NASA In-Space Propulsion Technology Project and many more instruments, including New Horizons, Mail Stop 77-4 MESSENGER, STEREO, and TIMED. Currently, APL is working on 21000 Brookpark Road the Solar Probe Plus and Radiation Belt Storm Probes. Cleveland, OH 44135 Contact: Daniel Vento JMARS — Mars Space Flight Facility — 216.433.2834 [email protected] Arizona State University 201 E. Orange Mall The In-Space Propulsion Technology Project develops advanced Tempe, AZ 85287 propulsion technology for the NASA Science Mission Directorate. Contact: Scott Dickenshied 520.891.7903 [email protected] JMARS (Java Mission-planning and Analysis for Remote Sensing) is a Java-based geospatial information system developed by the Mars Space Flight Facility at Arizona State University. It is currently used for mission planning and scientifi c data analysis by several NASA missions, including Mars Odyssey, Mars Reconnaissance Orbiter, and the Lunar Reconnaissance Orbiter. NASA Jet Propulsion Laboratory — NASA Lunar Science Institute Europa Mission/Outer Planets NASA Ames Research Center Building 17, Room 114 4800 Oak Grove Drive Moffett Field, CA 94035 Mail Stop 230-260 Contact: Ashcon Nejad Pasadena, CA 91109-8001 650.604.3881 Contact: Edward Gonzales [email protected] 818.653.6442 or 818.354.2326 The NASA Lunar Science Institute (NLSI) is a virtual institute [email protected] comprised of several competitively selected teams across the JPL is the NASA center for robotic exploration of the solar U.S., a
Recommended publications
  • Linking Stars, Planets and Debris Through Herschel Observations of Radial Velocity Exoplanet Host Stars
    Linking stars, planets and debris through Herschel observations of radial velocity exoplanet host stars Jonathan P. Marshall Universidad Autónoma de Madrid Introduction • Herschel observed 104 radial velocity exoplanet host stars, of which 30 also had detectable circumstellar discs (DEBRIS, DUNES, GT and SKARPS) • Given that we expect planets to form from the agglomeration of planetesimals, there should be some link between the two • Previous work with Spitzer identified no correlation between planets and debris (Moro-martin et al. 2007, Bryden et al. 2009) • Observational signatures of planets may be visible in the spatial distribution of dust discs around other stars Imaging exoplanets • We find exoplanets in systems with debris discs (Marois et al. 2008; Bonnefoy et al. 2011; Rameau et al. 2013) Multi-component discs • HIP 17439’s debris disc is potentially the result of two cold dust belts Ertel et al. 2014 Schueppler et al., subm. Dynamical interactions • e.g. Eta Corvi’s Spitzer IRS spectrum shows evidence for KBO material in inner system Matthews et al. 2010 Lisse et al. 2012 Perturbation • Stars hosting exoplanets with low orbital eccentricities show a weak tendency to have brighter discs • Planets with lower eorb are less disruptive to parent bodies in debris belts Maldonado et al. 2012 Eccentric discs • e.g. HIP 15371 • Asymmetric structure proposed to be the result of dynamical perturbation by a planetary companion . Similar evidence seen in other discs (in sub-mm) tends to be weak, potentially result of low s/n observation . Not necessarily a planet, as remnant gas could affect dust Faramaz et al. 2014 Coplanarity • Inclination of star, i*, and disc, id • Debris discs are generally seen to lie along the equatorial plane of the host star • Few exceptions, e.g.
    [Show full text]
  • Exomoon Habitability Constrained by Illumination and Tidal Heating
    submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons.
    [Show full text]
  • Towards a Classification System of Terrestrial Planets
    7RZDUGVD&ODVVL¿FDWLRQ6\VWHPRI7HUUHVWULDO3ODQHWV Charles H. Lineweaver and Jose A. Robles Planetary Science Institute, Research School of Astronomy and Astrophysics, Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 Australia. Abstract: The focus of extrasolar planet searches has become the detection of habitable terrestrial planets. Planetary mass and orbit have large and obvious effects on habitability. Since the chemical compositions of terrestrial planets also play an important role in habitability, we propose the creation RIDFODVVL¿FDWLRQV\VWHPIRU(DUWKOLNHSODQHWVEDVHGRQWKHDEXQGDQFHVRIHOHPHQWVPRVWLPSRUWDQW IRUKDELWDELOLW\:HGHVFULEHWKHPHWKRGRORJ\IRUWKHFUHDWLRQRIVXFKDFODVVL¿FDWLRQV\VWHPEDVHG on the observed chemical abundances of stars. Keywords: Terrestrial planet formation, Solar system, chemical composition Introduction %DFNJURXQGIRUWKH&UHDWLRQRID3ODQHW&ODVVL¿FDWLRQ6\VWHP 6FLHQWL¿FXQGHUVWDQGLQJRIDJURXSRIQHZREMHFWVEHJLQVZLWKDXVHIXOFODVVL¿FDWLRQVFKHPH)RU a century astronomers have relied on the Hertzsprung-Russell diagram to classify stars according to their colour and magnitude. In the Hertzsprung-Russell diagram the Sun is seen to be part of the PDLQVHTXHQFHRIK\GURJHQEXUQLQJVWDUV$QDQDORJRXVFODVVL¿FDWLRQV\VWHPIRUSODQHWVKDV\HWWR emerge. In our Solar System we have: small rocky planets close to the Sun (Mercury, Venus, Earth, Mars, asteroids), the gas giants (Jupiter and Saturn), then the ice giants (Uranus and Neptune) and ¿QDOO\DVZDUPRIVPDOOGLUW\VQRZEDOOV 3OXWRDQGFRPSDQ\ 7KLVUXGLPHQWDU\RUELWDOUDGLXV
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • The Subsurface Habitability of Small, Icy Exomoons J
    A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING on a VARIETY of SCALES 1:30 P.M
    Lunar and Planetary Science XLVIII (2017) sess453.pdf Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING ON A VARIETY OF SCALES 1:30 p.m. Waterway Ballroom 5 Chairs: Arya Udry Geoffrey Howarth 1:30 p.m. Nielsen S. G. * Magna T. Mezger K. The Vanadium Isotopic Composition of Mars and Evidence for Solar System Heterogeneity During Planetary Accretion [#1225] Vanadium isotope composition of Mars distinct from Earth and chondrites. 1:45 p.m. Tait K. T. * Day J. M. D. Highly Siderophile Element and Os-Sr Isotope Systematics of Shergotittes [#3025] The shergottite meteorites represent geochemically diverse, broadly basaltic, and magmatically-derived rocks from Mars. New samples were processed and analyzed. 2:00 p.m. Armytage R. M. G. * Debaille V. Brandon A. D. Agee C. B. The Neodymium and Hafnium Isotopic Composition of NWA 7034, and Constraints on the Enriched End-Member for Shergottites [#1065] Couple Sm-Nd and Lu-Hf isotopic systematics in NWA 7034 suggest that such a crust is not the enriched end-member for shergottites. 2:15 p.m. Howarth G. H. * Udry A. Nickel in Olivine and Constraining Mantle Reservoirs for Shergottite Meteorites [#1375] Ni enrichment in olivine from enriched versus depleted shergottites provide evidence for constraining mantle reservoirs on Mars. 2:30 p.m. Jean M. M. * Taylor L. A. Exploring Martian Mantle Heterogeneity: Multiple SNC Reservoirs Revealed [#1666] The objective of the present study is to assess how many mixing components can be recognized, and address ongoing debates within the martian isotope community. 2:45 p.m. Udry A. * Day J.
    [Show full text]
  • Dear Secretary Salazar: I Strongly
    Dear Secretary Salazar: I strongly oppose the Bush administration's illegal and illogical regulations under Section 4(d) and Section 7 of the Endangered Species Act, which reduce protections to polar bears and create an exemption for greenhouse gas emissions. I request that you revoke these regulations immediately, within the 60-day window provided by Congress for their removal. The Endangered Species Act has a proven track record of success at reducing all threats to species, and it makes absolutely no sense, scientifically or legally, to exempt greenhouse gas emissions -- the number-one threat to the polar bear -- from this successful system. I urge you to take this critically important step in restoring scientific integrity at the Department of Interior by rescinding both of Bush's illegal regulations reducing protections to polar bears. Sarah Bergman, Tucson, AZ James Shannon, Fairfield Bay, AR Keri Dixon, Tucson, AZ Ben Blanding, Lynnwood, WA Bill Haskins, Sacramento, CA Sher Surratt, Middleburg Hts, OH Kassie Siegel, Joshua Tree, CA Sigrid Schraube, Schoeneck Susan Arnot, San Francisco, CA Stephanie Mitchell, Los Angeles, CA Sarah Taylor, NY, NY Simona Bixler, Apo Ae, AE Stephan Flint, Moscow, ID Steve Fardys, Los Angeles, CA Shelbi Kepler, Temecula, CA Kim Crawford, NJ Mary Trujillo, Alhambra, CA Diane Jarosy, Letchworth Garden City,Herts Shari Carpenter, Fallbrook, CA Sheila Kilpatrick, Virginia Beach, VA Kierã¡N Suckling, Tucson, AZ Steve Atkins, Bath Sharon Fleisher, Huntington Station, NY Hans Morgenstern, Miami, FL Shawn Alma,
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]