Kv1.5 Open Channel Block by the Antiarrhythmic Drug Disopyramide: Molecular Determinants of Block

Total Page:16

File Type:pdf, Size:1020Kb

Kv1.5 Open Channel Block by the Antiarrhythmic Drug Disopyramide: Molecular Determinants of Block J Pharmacol Sci 108, 49 – 55 (2008)1 Journal of Pharmacological Sciences ©2008 The Japanese Pharmacological Society Full Paper Kv1.5 Open Channel Block by the Antiarrhythmic Drug Disopyramide: Molecular Determinants of Block Iván A. Aréchiga1, Gabriel F. Barrio-Echavarria1, Aldo A. Rodríguez-Menchaca1, Eloy G. Moreno-Galindo1, Niels Decher2, Martin Tristani-Firouzi3, José A. Sánchez-Chapula1, and Ricardo A. Navarro-Polanco1,* 1Unidad de Investigación “Carlos Méndez” del Centro de Investigaciones Biomédicas de la Universidad de Colima, Colima, México 2Institute of Physiology, Philipps-University, Marburg, Germany 3Department of Pediatric of Cardiology, University of Utah, Salt Lake City, UT 84132, USA Received March 26, 2008; Accepted July 9, 2008 Abstract. Kv1.5 is considered to be a potential molecular target for treatment of atrial fibrilla- tion or flutter. Disopyramide is widely used in the treatment of atrial flutter and/or atrial fibril- lation. The present study was undertaken to characterize the effects of disopyramide on currents mediated by Kv1.5 channels and to determine the putative binding site involved in the inhibitory effects of disopyramide. Experiments were carried out on wild-type and site directed mutated hKv1.5 channels expressed on HEK 293 cells using the patch-clamp technique. Disopyramide acting from the cytoplasmic side of the membrane produced blocking effects on Kv1.5 that exhibited several features typical of an open channel blocker. Ala-scanning mutagenesis of the Kv1.5 pore domain combined with macroscopic current analysis suggested that disopyramide interacted only with the Val512 residue that faces to the central cavity of the channel. Mutation of this key residue to Ala caused marked change in the IC50 of disopyramide (22-fold). The single interaction between disopyramide and Val512 in the PVP region is able to change the mechanism of channel closure, reproducing the “foot-in-the-door” phenomenon. Keywords: potassium channel, ultra rapid delayed rectifier, Kv1.5, antiarrhythmic, disopyramide Introduction selective block of IKur produced a stronger prolongation of action potential in patients with AF compared to The most common sustained cardiac arrhythmias in patients with sinus rhythm (SR) (7). Class 1A (sodium clinical practice are atrial flutter and/or atrial fibrillation channel blocker) and Class III (potassium channel (AF). The goals of antiarrhythmic therapy are to restore blocker) antiarrhythmic agents reduce the rate of sinus rhythm, to facilitate electrical cardioversion, to recurrence of AF, but are of limited use because of a prevent AF recurrence, and to control ventricular rate variety of potentially adverse effects including ventri- (1). Kv1.5 channels are highly expressed in human atria cular proarrhythmia (1, 8). Disopyramide is a widely (but not ventricle) and conduct the ultrarapid delayed used Class Ia antiarrhythmic agent that is employed in rectifier current (IKur) that contributes to action potential the treatment of AF (9). Disopyramide is a nonspecific repolarization of human atrial myocytes (2 – 4). Thus, channel blocker (9), which blocks cardiac Na+ channels Kv1.5 is a potential target for treatment of atrial to slow conduction (10 – 12). In addition, disopyramide fibrillation or atrial flutter. In different animal models, it blocks repolarizing cardiac K+ channels to prolong was shown that AF could be terminated effectively by action potential duration (13 – 16). selective blockers of IKur (5, 6). Also in human atria, Ongoing studies of potassium channel inhibition by synthetic compounds and toxins provide important *Corresponding author. [email protected] contributions to our understanding of these membrane Published online in J-STAGE proteins. Classical ion channel blockers, such as local doi: 10.1254/jphs.08084FP anesthetics and antiarrhythmics are used both clinically 49 50 IA Aréchiga et al and as molecular probes for studying ion channel external solution contained 130 mM NaCl, 4 mM KCl, function. Drug-binding from the internal side takes place 1 mM MgCl2, 10 mM Hepes, 1.8 mM CaCl2, and 10 mM inside a large water-filled inner cavity and requires a glucose (pH was adjusted to 7.35 with NaOH). Patch change in protein conformation to allow entrance of pipettes were filled with 5 mM K4BAPTA, 100 mM the blocker. Disopyramide blocks various potassium KCl, 10 mM Hepes, 5 mM MgCl2, 5 mM ATP-K2 (pH currents like the transient outward current Ito (15) and adjusted to 7.2 with KOH). The holding potential was the delayed rectifying outward current IKr (13, 14, 16). −80 mV. The interpulse interval for all the protocols Disopyramide is suggested to bind only to open channels was 15 s to allow channels to fully recover from and either has extremely low affinity or is unable to bind inactivation between pulses. To obtain current–voltage to closed channels (15 – 17). To our knowledge, the relationships and activation curves, 200-ms voltage effect of disopyramide on IKur or Kv1.5 has not been steps were applied in 10-mV increments to potentials studied. that varied from −60 to +60 mV, followed by repolariza- Identification of the drug binding site and understand- tion to −40 mV. The ratio of current in the presence of ing of the channel blocker binding mode may help to drug divided by current before drug (Idrug/Icontrol) was promote the development of in silico prediction methods determined to calculate the fraction of unblocked current for identifying potential Kv1.5 channel blockers. as a function of time. The time constant of current block Quinidine has been reported to block Kv1.5 by interact- ( b) was determined by fitting Idrug/Icontrol to a mono- ing primarily with residues in the S6 domain (18). exponential function. The voltage dependence of Kv1.5 Recently, Decher et al. (19, 20) used an alanine- channel activation (with or without disopyramide) was scanning mutagenesis approach to define residues in the determined from tail current analyses at −40 mV. The pore of Kv1.5 that interact with S0100176 and resulting relationship between test voltage (Vt) and AVE0118, two novel antiarrhythmic agents. Mutation of normalized tail current (In) was fit to a Boltzmann residues located at the base of the pore helix and the S6 equation to obtain the halfpoint (V1/2) and slope factor domain had the greatest effect on reducing the potency (k): In = 1 / {1 + exp[(V1/2 − Vt) /k]}. Other voltage pulse of these Kv1.5 channel blockers. In the present study, protocols are described under Results and Figure we investigated the effects of disopyramide on currents legends. mediated by Kv1.5 channels expressed in a mammalian cell line, with the following aims: i) to characterize Data analyses the nature of the inhibitory action on Kv1.5 by dis- pCLAMP 8 (Molecular Devices, Sunnyvale, CA, opyramide; and ii) to define the molecular basis of USA) and Origin 7 (OriginLab Corp, Northampton, disopyramide block of Kv1.5 channels. MA, USA) software were used for data acquisition and analysis on a personal computer. All the fitting Materials and Methods procedures were based on the simplex algorithm. The concentration required for 50% block of current (IC50) Molecular biology was determined from Hill plots using 3 – 5 concentra- Wild-type (WT) and mutant Kv1.5 (KCNA5) cDNA tions of drug for each mutant (5 – 12 cells/point). were generously donated by Dr. Michael Sanguinetti Results are each reported as the mean ± S.E.M. from the University of Utah and Dr. Niels Decher (n = number of cells). Statistical differences between (Aventis Pharma GmbH, Frankfurt, Germany). WT and mutant channels were evaluated by ANOVA and Bonferroni’s test. Significance was assumed for Transfection of HEK 293 cells P<0.05. HEK 293 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with Drugs 10% horse serum at 37°C in an air 5% CO2 incubator. Disopyramide (Sigma-Aldrich, Mexico City, Mexico) Cells were transiently transfected using Lipofectamine was prepared daily, dissolved at the desired concentra- 2000 (Invitrogen, Mexico City, Mexico) according to tions in the external or internal solution. the supplier’s directions. Soluble GFP was coexpressed with the channel subunits to identify cells for voltage Results clamp experiments. Voltage-dependent block of Kv1.5 channels by dis- Voltage clamp protocols opyramide Currents were recorded at room temperature (23°C The effect of disopyramide on Kv1.5 was character- –25°C) with standard patch clamp techniques. The ized by recording currents in a voltage range from −60 to Disopyramide Blocking of hKv1.5 51 Fig. 1. Disopyramide effect on WT Kv1.5 channel. Whole cell currents recorded from HEK-293 cells before (A) and after (B) extracellular applica- tion of disopyramide (100 µM). Cur- rents were elicited by 200-ms depolar- izations from a holding potential of −80 mV to test potentials between −60 to +60 mV in 10-mV steps. Test potential was followed by a repolar- izing step to −40 mV to record deactivation currents. C: I-V relation- ships for currents measured at the end of the 200-ms test pulse before and after application of 100 and 300 µM disopyramide (n = 5). D: Fractional block of WT Kv1.5 currents, measured at the end of 200-ms pulses and plotted as a function of test potential. E: Acti- vation curves generated with tail currents in the absence or presence of drug. Tail currents were normalized to the peak value under control conditions for each cell. The smooth curves were obtained by fitting average data to a Boltzmann function. F: Tail currents recorded in control conditions and in the presence of disopyramide. +60 mV, applied in 10-mV increments from a holding disopyramide, Fig. 1E). Figure 1F shows the super- potential of −80 mV. In the absence of drug, Kv1.5 position of the tail currents obtained at −40 mV after a slowly inactivates during the test pulse (Fig.
Recommended publications
  • Table 2. 2012 AGS Beers Criteria for Potentially
    Table 2. 2012 AGS Beers Criteria for Potentially Inappropriate Medication Use in Older Adults Strength of Organ System/ Recommendat Quality of Recomm Therapeutic Category/Drug(s) Rationale ion Evidence endation References Anticholinergics (excludes TCAs) First-generation antihistamines Highly anticholinergic; Avoid Hydroxyzin Strong Agostini 2001 (as single agent or as part of clearance reduced with e and Boustani 2007 combination products) advanced age, and promethazi Guaiana 2010 Brompheniramine tolerance develops ne: high; Han 2001 Carbinoxamine when used as hypnotic; All others: Rudolph 2008 Chlorpheniramine increased risk of moderate Clemastine confusion, dry mouth, Cyproheptadine constipation, and other Dexbrompheniramine anticholinergic Dexchlorpheniramine effects/toxicity. Diphenhydramine (oral) Doxylamine Use of diphenhydramine in Hydroxyzine special situations such Promethazine as acute treatment of Triprolidine severe allergic reaction may be appropriate. Antiparkinson agents Not recommended for Avoid Moderate Strong Rudolph 2008 Benztropine (oral) prevention of Trihexyphenidyl extrapyramidal symptoms with antipsychotics; more effective agents available for treatment of Parkinson disease. Antispasmodics Highly anticholinergic, Avoid Moderate Strong Lechevallier- Belladonna alkaloids uncertain except in Michel 2005 Clidinium-chlordiazepoxide effectiveness. short-term Rudolph 2008 Dicyclomine palliative Hyoscyamine care to Propantheline decrease Scopolamine oral secretions. Antithrombotics Dipyridamole, oral short-acting* May
    [Show full text]
  • NORPACE- Disopyramide Phosphate Capsule, Gelatin Coated
    NORPACE- disopyramide phosphate capsule, gelatin coated Carilion Materials Management ---------- Norpace disopyramide phosphate capsules Norpace CR disopyramide phosphate extended- release capsules ® ® DESCRIPTION Norpace (disopyramide phosphate) is an antiarrhythmic drug available for oral administration in immediate-release and controlled-release capsules containing 100 mg or 150 mg of disopyramide base, present as the phosphate. The base content of the phosphate salt is 77.6%. The structural formula of Norpace is: Norpace is freely soluble in water, and the free base (pKa 10.4) has an aqueous solubility of 1 mg/ml. The chloroform:water partition coefficient of the base is 3.1 at pH 7.2. Norpace is a racemic mixture of and isomers. This drug is not chemically related to other antiarrhythmic drugs. d-l- Norpace CR (controlled-release) capsules are designed to afford a gradual and consistent release of disopyramide. Thus, for maintenance therapy, Norpace CR provides the benefit of less-frequent dosing (every 12 hours) as compared with the every-6-hour dosage schedule of immediate-release Norpace capsules. Inactive ingredients of Norpace include corn starch, edible ink, FD&C Red No. 3, FD&C Yellow No. 6, gelatin, lactose, talc, and titanium dioxide; the 150-mg capsule also contains FD&C Blue No. 1. Inactive ingredients of Norpace CR include corn starch, D&C Yellow No. 10, edible ink, ethylcellulose, FD&C Blue No. 1, gelatin, shellac, sucrose, talc, and titanium dioxide; the 150-mg capsule also contains FD&C Red No. 3 and FD&C Yellow No. 6. CLINICAL PHARMACOLOGY Mechanisms of Action Norpace (disopyramide phosphate) is a Type 1 antiarrhythmic drug (i.e., similar to procainamide and quinidine).
    [Show full text]
  • Disopyramide for Obstructive Hypertrophic Cardiomyopathy Symptoms and Gradient Resistant to First-Line Medical Therapy Approxima
    Disopyramide for Obstructive Hypertrophic Cardiomyopathy Symptoms and Gradient Resistant to First‐Line Medical Therapy Approximately 2/3 of patients with hypertrophic cardiomyopathy (HCM) have left ventricular outflow tract (LVOT) obstruction either at rest or after physiologic provocation. Besides left ventricular hypertrophy (LVH), such patients have either resting, or provocable LVOT gradient > 30mmHg which contributes to their symptoms of exercise intolerance, dyspnea, angina or syncope. Moreover, resting gradient is associated with decreased survival. The most common cause of LVOT obstruction is due to systolic anterior motion of the mitral valve (SAM) and mitral‐septal contact. The underlying cause of SAM is an altered internal geometry of the LV, leading to an overlap between the inflow and outflow portions of the LV. Besides septal hypertrophy, this overlap is caused by anterior displacement of the mitral apparatus (papillary muscles and mitral leaflets) and mitral slack. Drag, the pushing force of flow is the dominant hydrodynamic force that causes SAM; flow gets behind the mitral leaflets and sweeps them into the septum. LVOT obstruction is associated with increased systolic LV work, decreased diastolic aortic perfusion pressure, supply‐demand ischemia, load‐related impairment in diastolic relaxation and a mid‐systolic drop in instantaneous LV ejection flow velocities and flow 1 A unique feature of obstructive HCM is the provocable gradient. Obstruction worsens after physiologic stimuli that reduce preload and afterload and increase contractility such as Valsalva maneuver, standing, after eating and particularly after exercise. Unfortunately, the more widely used cardiac medications, such as ACE‐inhibitors, ARBs, vasodilators, and nitrates are deleterious in exactly this way and increase gradient because of their vasodilatory properties.
    [Show full text]
  • Neemmc Guidelines for Tablet Crushing and Administration Via Enteral Feeding Tubes
    NEEMMC GUIDELINES FOR TABLET CRUSHING AND ADMINISTRATION VIA ENTERAL FEEDING TUBES KEY TO DRUG ADMINISTRATION GUIDELINES Please follow the guidelines in order, as shown in the chart (i.e. number 1 is the first choice of which form to administer the drug in). A Tablet will disperse in 1-2 minutes. B Tablet will disperse in greater than 2 minutes. C Liquid preparation available. D Dilute reconstituted injection with 30-60ml of water before administering. E Oral solution/suspension can be prepared by local pharmacy or Non Sterile Preparative Services (PSU at Colchester General Hospital). Note: It is an unlicensed use to crush tablets, open capsules and make extemporaneous suspensions. However, using tablets within these guidelines is covered by the Trust for legal/vicarious liability. For more information on the administration via different tubes, please contact Medicines Information on ext. 2161. Drug Key code Information ACETAZOLAMIDE 1. A* * Diamox SR capsules can be opened and 2. D the contents flushed down the enteral tube 3. E ACICLOVIR 1. C * Dispersible tablets available 2. A* ALFACALCIDOL C* * Drops available. Sensitive to light ALFUZOSIN A Beware of sudden hypotensive effect if giving crushed tablets. Monitor BP and ensure patient is lying down prior to administering the dose. Do not crush slow release preparations. ALLOPURINOL 1. B 2. E ALVERINE Content of capsules is very bitter, and might numb the tongue and throat. AMILORIDE 1. B 2. C* * Liquid available. AMINOPHYLLINE Convert to theophylline liquid equivalent. Do not crush SR preparations. AMIODARONE B AMITRIPTYLINE 1. C 2. B AMLODIPINE A A Tablet will disperse in 1-2 minutes.
    [Show full text]
  • DISOPYRAMIDE PHOSPHATE CAPSULES, Usp31273129rx Only
    DISOPYRAMIDE PHOSPHATE- disopyramide phosphate capsule Carilion Materials Management ---------- DISOPYRAMIDE PHOSPHATE CAPSULES, USP 3127 3129 Rx only DESCRIPTION Disopyramide Phosphate is an antiarrhythmic drug available for oral administration in capsules containing 100 mg or 150 mg of disopyramide base, present as the phosphate. The base content of the phosphate salt is 77.6%. The structural formula of Disopyramide Phosphate is: C21H29N3O•H3PO4 M.W. 437.47 α-[2-(diisopropylamino) ethyl]-α-phenyl-2-pyridineacetamide phosphate Disopyramide Phosphate is freely soluble in water, and the free base (pKa 10.4) has an aqueous solubility of 1 mg/mL. The chloroform:water partition coefficient of the base is 3.1 at pH 7.2. Disopyramide Phosphate is a racemic mixture of d- and l-isomers. This drug is not chemically related to other antiarrhythmic drugs. Inactive Ingredients:Capsules: Lactose Monohydrate, Magnesium Stearate and Sodium Starch Glycolate. Capsule Print and Shell Constituents: Black Iron Oxide, D&C Red #28, D&C Red #33, D&C Yellow #10, D&C Yellow #10 Aluminum Lake, FD&C Blue #1, FD&C Blue #1 Aluminum Lake, FD&C Blue #2 Aluminum Lake, FD&C Red #40 Aluminum Lake, Gelatin, Propylene Glycol, Shellac, Sodium Lauryl Sulfate, Sorbitan Monolaurate and Titanium Dioxide. CLINICAL PHARMACOLOGY Mechanisms of Action Disopyramide Phosphate is a Type 1 antiarrhythmic drug (i.e., similar to procainamide and quinidine). In animal studies, Disopyramide Phosphate decreases the rate of diastolic depolarization (phase 4) in cells with augmented automaticity, decreases the upstroke velocity (phase 0) and increases the action potential duration of normal cardiac cells, decreases the disparity in refractoriness between infarcted and adjacent normally perfused myocardium, and has no effect on alpha- or beta-adrenergic receptors.
    [Show full text]
  • DOMASYS Standard
    NEW ZEALAND DATA SHEET 1 PRODUCT NAME Rythmodan 100mg capsules Rythmodan 150mg# capsules #Not marketed 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Rythmodan 100mg and 150mg# capsules contain 100mg and 150mg of disopyramide respectively For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM 100 mg capsules: green & beige, marked RY RL 150 mg# capsules: white, marked RY 150 in black. 4 CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS Disopyramide is indicated for the treatment of symptomatic and/or life-threatening arrhythmias. Specific indications are as follows: Disopyramide is indicated in the following symptomatic arrhythmias: • atrial or ventricular extrasystoles • treatment of atrial arrhythmias • atrial fibrillation or flutter: preparation for cardioversion; substitution for cardioversion, when the latter is contraindicated or unfeasible; prevention of relapses following restoration of sinus rhythm rythmodan-ccdsv6-dsv7-31may21 Page 1 • prevention of attacks of paroxysmal tachycardia, Bouveret type, including Wolff-Parkinson- White syndrome • prevention of relapses of paroxysmal ventricular tachycardia 4.2 DOSE AND METHOD OF ADMINISTRATION The daily dose of RYTHMODAN capsules must be administered as no less than 3 equal divided doses. Adults with Normal Hepatic and Renal Function: Prevention or Curative Treatment of Symptomatic Arrhythmias Initial treatment: 400 to 600 mg per day Maintenance treatment: reached by progressively reducing the daily dose by 100 mg per day to reach a final dose of 300 to 400 mg per day on average. Substitution Treatment for Cardioversion When cardioversion is contraindicated or otherwise not feasible, the initial capsule dosage can be increased to 800 mg on the first day in 4 divided doses. Preparation for cardioversion, after stopping digitalis 100 mg capsule on the previous evening 3 x 100 mg just before cardioversion in three doses at hourly intervals 100 mg capsule on the evening of cardioversion followed by the usual maintenance treatment from the next day onwards.
    [Show full text]
  • Antiarrhythmic Pharmacotherapy
    Antiarrhythmic Pharmacopoeia Powerful drugs, split into 4 major classes, according to the predominant receptor they effect. Some fit into several classes at once, like sotolol. Some don’t fit at all, owing to the intrinsic weirdness of their actions and the archaic quaintness of this system of classification, introduced in 1970 by EM Vaughan Williams. CLASS 1 drugs: Fast Sodium Channel Blockers, “membrane stabilizers” These are split into 3 subclasses, organized by binding speed (but, curiously, not in any order). The classes are 1a, 1b and 1c. From fastest to slowest binding, the order is B, A, C. Why would you want different speeds? The speed of binding is also the speed of dissociation from the receptor. Many of these drugs only bind to an active receptor. Lets say the heart is going very fast, and the drug is slow to dissociate from the receptor: each time an action potential comes past the cell, more and more channels are going to get blocked. This results in a general slowing of the rate of action potential propagation, and so the QRS interval widens. CLASS 1 A: quinidine, procainamide, and disopyramide. Used very rararely.rely. Only Disopyramide is available for use in Australia, and the rest have fallenfallen out of favour in 2007. “moderateAll Class 1a blockade” drugs have some potassium channel blockade capacity;- Block With fasta slow sodium heart channels,rate, they thuswill become reduce ratearrhythmogenic, of phase 0 upstroke because the potassium- Block blockade repolarising becomes potassium the dominant channels, feature. thus (prolong“reverse repolarisatiuse dependence”)on - Prolong QRS interval - Prolong QT interval Therefore, the length of the action potential is greatly slowed.
    [Show full text]
  • Some Cardiovascular Problems with Disopyramide JOHN HAMER
    Postgrad Med J: first published as 10.1136/pgmj.56.654.229 on 1 April 1980. Downloaded from Postgradiuate Medical Journal (April 1980) 56, 229-233 Some cardiovascular problems with disopyramide S. J. WARRINGTON JOHN HAMER M.A., M.R.C.P. M.D., Ph.D., F.R.C.P. Department of Clinical Pharmnacology, St Bartholomew's Hospital, London, E.C.I Summary review assessed the mortality of simple quinidine Five patients with apparent adverse cardiovascular conversion of atrial fibrillation as 3% (Thomson, effects of disopyramide are reviewed. Attention is 1956). drawn to the following problems. Four aspects of the cardiac effects of diso- (1) A vagolytic effect may produce a sinus tachy- pyramide noted by the authors recently seem worthy cardia with wide QRS complexes due to aberrant ofcomment: (1) adversecardiovasculareffects related conduction or intraventricular block superficially to the additional vagolytic effect of disopyramide, resembling a ventricular tachycardia, or may allow similar to those seen with quinidine; (2) adverse increased transmission of an atrial tachycardia or effects in sinus node disease; (3) a capacity to provoke atrial flutter to the ventricles by improving atrio- dangerous ventriculararrhythmias as is also seen with ventricular conduction. quinidine (Krikler and Curry, 1976); in addition, (2) Although the vagolytic effect is helpful in (4) the authors wish to stress the need for caution increasing sinus rate in patients with sinus node with intravenous injection to avoid side effects which disease, disopyramide may lead to bradycardia and may be related to immediate transient high plasma copyright. asystolic cardiac arrest, and should not be used concentrations before distribution of the drug can without a demand pacemaker.
    [Show full text]
  • Ocular Side Effects of Disopyramide
    Br J Ophthalmol: first published as 10.1136/bjo.68.12.890 on 1 December 1984. Downloaded from British Journal of Ophthalmology, 1984, 68, 890-891 Ocular side effects of disopyramide J. FRUCHT', I. FREIMANN,2 AND S. MERIN' From the Departments of ' Ophthalmology and 2Cardiology, Hadassah University Hospital, Kiryat Hadassah, Jerusalem, Israel SUMMARY A patient who suffered from severe decrease of accommodation andpupillarydilatation following the systemic use of disopyramide is described. The ocular side effects when this drug is used in large doses result from its anticholinergic action. Disopyramide (4 di-isopropylamino-2 phenyl-2-(2- tests were within the normal range. The patient had pyridyl) butyramide phosphate) is currently used as no ocular symptoms. an antiarrhythmic drug.' 2 Its pharmacological effect On her second day in hospital the attacks of ventri- on the heart is thought to be known.'-3 Disopyramide cular tachycardia no longer responded to the usual slows the depolarisation rate of the action potential, antiarrhythmic drugs and the cardiologist decided to depresses phase 4, and prolongs the duration of re- treat her with high doses of disopyramide. The polansation.' With the widespread use of the drug patient's weight was 49 kg. A dose of 200 mg of copyright. several adverse side effects have been described.4 disopyramide was injected intravenously and 150 mg Most were caused by its anticholinergic action and six times a day was given orally. On the next day the included dry mouth, urinary retention,5 and acute oral dose was raised to 300 mg six times a day. This angle closure glaucoma.6 Disopyramide has been re- dose finally prevented the attacks of ventricular ported47 to cause blurred vision, but no explanation tachycardia.
    [Show full text]
  • Disopyramide (Norpace)
    ALDERFER & TRAVIS CARDIOLOGY, PC 670 Lawn Ave., Suite 3A Sellersville, PA 18960 Tel (215)257-9500 FAX (215) 257-9500 DISOPYRAMIDE - ORAL OTHER NAMES: Norpace CR, Rythmodan USES: This medication is used to treat irregular heart rhythms (arrhythmias) and maintain a normal heart rate. HOW TO TAKE THIS MEDICATION: This is best taken with a full glass of water on an empty stomach one hour before or two hours after meals. If stomach upset occurs, it may be taken with food. Sustained-release tablets and capsules must be swallowed whole. Do not crush or chew them. This medication works best when there is a constant level of the drug in your body. To do this, take each dose as prescribed at evenly spaced intervals throughout the day and night. Try to take each dose at the same time each day. SIDE EFFECTS: Blurred vision, dry mouth, constipation, or difficulty urinating may occur as your body adjusts to the medication. If these symptoms persist or become bothersome, contact your doctor. Inform your doctor if you develop chest pain, rapid heartbeat, confusion, easy bruising or bleeding, rash, or breathing difficulties while taking this medication. This drug may cause dizziness and lightheadedness. To avoid this, rise from a seated or lying position slowly. Avoid alcohol PRECAUTIONS: Women who are pregnant or breast-feeding should inform their doctors. Before taking disopyramide, tell your doctor if you have myasthenia gravis; high blood pressure; glaucoma (or a family history of glaucoma); heart, liver, kidney, or prostate disease; difficulty urinating. Do not stop taking this medication without consulting your doctor.
    [Show full text]
  • Emerging Medical Treatment for Hypertrophic Cardiomyopathy
    Journal of Clinical Medicine Review Emerging Medical Treatment for Hypertrophic Cardiomyopathy Alessia Argirò 1,* , Mattia Zampieri 1, Martina Berteotti 1, Alberto Marchi 1, Luigi Tassetti 1 , Chiara Zocchi 1, Luisa Iannone 2, Beatrice Bacchi 2, Francesco Cappelli 1, Pierluigi Stefàno 2, Niccolò Marchionni 3 and Iacopo Olivotto 1 1 Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy; [email protected] (M.Z.); [email protected] (M.B.); [email protected] (A.M.); [email protected] (L.T.); [email protected] (C.Z.); [email protected] (F.C.); [email protected] (I.O.) 2 Cardiac Surgery, Careggi University Hospital, 50134 Florence, Italy; [email protected] (L.I.); [email protected] (B.B.); pierluigi.stefano@unifi.it (P.S.) 3 Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; niccolo.marchionni@unifi.it * Correspondence: [email protected] Abstract: Hypertrophic cardiomyopathy (HCM) is a common myocardial disease characterized by otherwise unexplained left ventricular hypertrophy. The main cause of disabling symptoms in patients with HCM is left ventricular outflow tract (LVOT) obstruction. This phenomenon is multifactorial, determined both by anatomical and functional abnormalities: myocardial hyper- contractility is believed to represent one of its major determinants. The anatomical anomalies are targeted by surgical interventions, whereas attenuating hypercontractility is the objective of old and new drugs including the novel class of allosteric myosin inhibitors. This review summarizes the Citation: Argirò, A.; Zampieri, M.; current treatment modalities and discusses the emerging therapeutical opportunities focusing on the Berteotti, M.; Marchi, A.; Tassetti, L.; recently developed cardiac myosin ATPase inhibitors Mavacamten and CK-274.
    [Show full text]
  • Pharmacokinetic Interactions Between Digoxin and Other Drugs
    CORE Metadata, citation and similar papers at core.ac.uk Provided by82A Elsevier - Publisher Connector JACC Vol. 5, No.5 May 1985:82A-90A Pharmacokinetic Interactions Between Digoxin and Other Drugs FRANK I. MARCUS, MD, FACC Tucson, Arizona Drug interactions with digoxin are important because of particularly verapamil, have a similar effect. Potassium­ this agent's narrow therapeutic index. Amongthe drugs sparing diuretic drugs, such as spironolactone, can alter that can decrease digoxin bioavailability are cholestyr­ digoxin pharmacokinetics. amine, antacid gels, kaolin-peetate, certain antimicro­ Indomethacin may decrease renal excretion of dig­ bial drugs and cancer chemotherapeutic agents. In oxin in preterm infants. Finally, rifampin, an antibiotic selected patients, antibiotics may enhance digoxin bio­ used in the treatment of tuberculosis, may lower steady availability by eliminating intestinal flora that metabo­ state serum digoxin levels in patients with severe renal lize digoxin. disease. Physicians must maintain constant vigilance Antiarrhythmic drugs, such as quinidine and amio­ whenever medications are added to or withdrawn from darone, can markedly increase steady state serum dig­ a therapeutic regimen that includes digoxin. oxin levels. Certain calcium channel blocking drugs, (J Am Coil CardioI1985;5:82A-90A) Historical Perspective There is a high incidence of toxicity during the therapeutic use of this class of drugs. Interactions of cardiac glycosides Drug interactions with digoxin could only have been with other drugs contribute significantly to the high prev­ suspected but not verified before the availability of assays alence of digitalis toxicity. This review will focus on the sufficiently sensitive to measure digoxin in biological fluids pharmacokinetic interactions of digoxin.
    [Show full text]