Math 221 – 1St Semester Calculus Lecture Notes for Fall 2006

Total Page:16

File Type:pdf, Size:1020Kb

Math 221 – 1St Semester Calculus Lecture Notes for Fall 2006 Math 221 – 1st Semester Calculus Lecture Notes for Fall 2006. Prof J. Robbin December 21, 2006 All references to “Thomas” or “the textbook” in these notes refer to Thomas’ CALCULUS 11th edition published by Pearson Addison Wesley in 2005. These notes may be downloaded from http://www.math.wisc.edu/~robbin/221dir/lecs-221.pdf. Some portions of these notes are adapted from http://www.math.wisc.edu/~angenent/Free-Lecture-Notes/. Some problems come from a list compiled by Arun Ram, others come from the WES program, and others come from the aforementioned Thomas text or from Stewart, Calculus (Early Transcendentals), 3rd Edition. 1 Contents I What you need to know to take Calculus 221 5 1 Algebra 5 2 Coordinate Geometry 7 3 Functions 9 4 Trigonometry 12 5 Additional Exercises 15 II Limits 17 6 Tangent and Velocity 17 7 Limits 19 8 Two Limits in Trigonometry 26 9 Continuity 27 III Differentiation 31 10 Derivatives Defined 31 11 Higher Derivatives and Differential Notation 37 12 Implicit Functions 41 13 The Chain Rule 43 14 Inverse Functions 47 15 Differentiating Trig Functions 50 16 Exponentials and Logarithms 53 17 Parametric Equations 59 18 Approximation* 63 19 Additional Exercises 67 2 IV Applications of Derivatives 68 20 The Derivative as A Rate of Change 68 21 Related Rates 71 22 Some Theorems about Derivatives 74 23 Curve Plotting 81 24 Max Min Word Problems 84 25 Exponential Growth 87 26 Indeterminate Forms (l’Hˆopital’s Rule) 91 27 Antiderivatives 93 28 Additional Problems 95 V Integration 96 29 The Definite Integral 96 30 The Fundamental Theorem of Calculus 104 31 Averages 107 32 Change of Variables 108 VI Applications of Definite Integrals 112 33 Plane Area 112 34 Volumes 114 35 Arc Length 118 36 Surface Area 122 37 Center of Mass 125 VII Loose Ends 132 38 The Natural Log Again* 132 3 39 Taylor Approximation* 133 40 Newton’s Method* 135 VIII More Problems 136 IX Notes for TA’s 153 4 Chapter I What you need to know to take Calculus 221 In this chapter we will review material from high school mathematics. We also teach some of this material at UW in Math 112, Math 113, and Math 114, and some of it will be reviewed again as we need it. This material should be familiar to you. If it is not, you may not be ready for calculus. Pay special attention to the definitions. Important terms are shown in boldface when they are first defined. 1 Algebra This section contains some things which should be easy for you. (If they are not, you may not be ready for calculus.) §1.1. Answer these questions. 1. Factor x2 − 6x + 8. 2. Find the values of x which satisfy x2 − 7x + 9 = 0. (Quadratic formula.) 3. x2 − y2 =? Does x2 + y2 factor? √ 4. True or False: x2 + 4 = x + 2? √ 5. True or False: (9x)1/2 = 3 x? x2x8 6. True or False: = x2+8−3 = x7? x3 7. Find x if 3 = log2(x). x 8. What is log7(7 )? 9. True or False: log(x + y) = log(x) + log(y)? 10. True or False: sin(x + y) = sin(x) + sin(y)? §1.2. There are conventions about the order of operations. For example, ab + c means (ab) + c and not a(b + c), a b means a/(b/c) and not (a/b)/c, c a b means (a/b)/c and not a/(b/c), c log a + b means (log a) + b and not log(a + b). If necessary, we use parentheses to indicate the order of doing the operations. 5 §1.3. There is analogy between the laws of addition and the laws of multipli- cation: a + b = b + a ab = ba (a + b) + c = a + (b + c) (ab)c = a(bc) a + 0 = a a · 1 = a a + (−a) = 0 a · a−1 = 1 a − b = a + (−b) a/b = a · b−1 a − b = (a + c) − (b + c) a/b = (ac)/(bc) (a − b) + (c − d) = (a + c) − (b + d) (a/b) · (c/d) = (ac)/(bd) (a − b) − (c − d) = (a + d) − (b + c) (a/b)/(c/d) = (ad)/(bc) The last line explains why we invert and multiply to divide fractions. The only other law of arithmetic is the distributive law (a + b)c = ac + bc, c(a + b) = ca + cb. Note that (a + b)/c = (a/c) + (b/c), but1 c/(a + b) 6= (c/a) + (c/b). Exercises Exercise 1.4. Answer the questions in §1.1 Exercise 1.5. Here is a list of some algebraic expressions that have been “sim- plified.” Some steps in the simplification processes are correct and some of them are WRONG! For each problem: 1. Determine if the simplified result is correct. 2. Determine if there are any mistakes made in the simplication process. (NOTE: just because the result is correct does not mean there are no mistakes). 3. If there are mistakes, redo the problem correctly. If there are no mistakes, redo the problem with another correct method. x2 − 1 x2 + (−1) x2 −1 (i) = = + = x − 1 x + 1 x + 1 x 1 (ii)(x + y)2 − (x − y)2 = x2 + y2 − x2 − y2 = 0 1usually 6 9(x − 4)2 32(x − 4)2 (3x − 12)2 (iii) = = = 3x − 12 3x − 12 3x − 12 3x − 12 x2y5 (iv) = x2y5 · 2x3 = 2x6y5 2x−3 (2x3 + 7x2 + 6) − (2x3 − 3x2 − 17x + 3) 4x2 − 17x + 9 9 (v) = = 2x − 17 + (x + 8) + (x − 8) 2x 2x x−1 + y−1 (x + y)−1 x + y −1 x + y x + y (vi) = = = − = . x−1 − y−1 (x − y)−1 x − y x − y y − x 2 Coordinate Geometry The material in this section is crucial for understanding calculus. It is reviewed in Thomas pages 9-18, but if you have not seen it before you may not be ready for calculus. §2.1. Points and Slope. The notation P (x, y) is used as an abbreviation for the more cumbersome phrase “the point P whose coordinates are (x, y).” The slope of the line through the distinct points P0(x0, y0) and P1(x1, y1) is y − y m = 1 0 . y x1 − x0 6 P1 ¨¨ ¨¨ ¨ y1 − y0 ¨ ¨¨ P0¨ x − x 1 0 - x §2.2. Point-Slope Equation of a Line. If we use a different pair of points on the line to compute the slope, we get the same answer. Hence, a point P (x, y) lies on the line P0P1 if and only if we get the same answer for the slope when we use (x, y) in place of (x1, y1): y − y y − y 0 = 1 0 = m. x − x0 x1 − x0 This equation has one minor flaw; it doesn’t work when (x, y) = (x0, y0) (never divide by zero). To remedy this multiply by (x − x0) and add y0 to both sides: 7 y = y0 + m(x − x0). This is the equation for the line through P0(x0, y0) with slope m; this form makes it obvious that the point P0(x0, y0) lies on the line. For example, the equation for the line through P0(2, 3) and P1(4, 11) is y − 3 11 − 3 = = 4, or y = 3 + 4(x − 2), x − 2 4 − 2 See Thomas page 11. §2.3. If a line has slope m, then any line perpendicular to it has slope −1/m. (Proof: The slope of a line is the tangent of the angle it makes with the x-axis π and tan(φ + 2 ) = −1/ tan(φ). §2.4. Sometimes we use letters other than x and y. For this reason, always label the axes when you draw a graph. For example the line 2u + 3v = 1 can 2 1 3 1 be written as v = − 3 u + 3 and as u = − 2 v + 2 . If the u-axis is horizontal, the 2 3 slope is − 3 . If the v-axis is horizontal, the slope is − 2 . The slope is always the “rise over the run”, i.e. to find the slope, take two points on the line, subtract the vertical coordinates (this is the “rise”), subtract the horizontal coordinates (this is the “run”), and divide the rise by the run. §2.5. Distance and Circles. By the Pythagorean theorem the distance from P0(x0, y0) to P1(x1, y1) is p 2 2 |P0P1| = (x1 − x0) + (y1 − y0) The distance from a point P (x, y) to the point P0(x0, y0) is exactly a when 2 2 |P0P | = a , i.e. 2 2 2 (x − x0) + (y − y0) = a . This is the equation for the circle centered at P0 with radius a. For example, the equation of the circle of radius 5 centered at P0(2, 3) is (x − 2)2 + (y − 3)2 = 52, or x2 + y2 − 4x − 6y − 12 = 0. The latter equation has the form of a general 2nd degree equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (with A = C = 1, B = 0, D = −4, E = −6, F = −12). Ellipses (including circles), parabolas, and hyperbolas all have equations of this form. 8 Exercises Exercise 2.6. Let L1 and L2 be two lines. An equation for L1 is 6x + 4y = 7. The line L2 is perpendicular to L1 and goes through the point P0(−1, 0). Find an equation for the line L2 and the point where the two lines intersect. Exercise 2.7. Repeat the previous exercise replacing 6x+4y = 7 by ax+by = c and P0(−1, 0) by P0(x0, y0).
Recommended publications
  • The Enigmatic Number E: a History in Verse and Its Uses in the Mathematics Classroom
    To appear in MAA Loci: Convergence The Enigmatic Number e: A History in Verse and Its Uses in the Mathematics Classroom Sarah Glaz Department of Mathematics University of Connecticut Storrs, CT 06269 [email protected] Introduction In this article we present a history of e in verse—an annotated poem: The Enigmatic Number e . The annotation consists of hyperlinks leading to biographies of the mathematicians appearing in the poem, and to explanations of the mathematical notions and ideas presented in the poem. The intention is to celebrate the history of this venerable number in verse, and to put the mathematical ideas connected with it in historical and artistic context. The poem may also be used by educators in any mathematics course in which the number e appears, and those are as varied as e's multifaceted history. The sections following the poem provide suggestions and resources for the use of the poem as a pedagogical tool in a variety of mathematics courses. They also place these suggestions in the context of other efforts made by educators in this direction by briefly outlining the uses of historical mathematical poems for teaching mathematics at high-school and college level. Historical Background The number e is a newcomer to the mathematical pantheon of numbers denoted by letters: it made several indirect appearances in the 17 th and 18 th centuries, and acquired its letter designation only in 1731. Our history of e starts with John Napier (1550-1617) who defined logarithms through a process called dynamical analogy [1]. Napier aimed to simplify multiplication (and in the same time also simplify division and exponentiation), by finding a model which transforms multiplication into addition.
    [Show full text]
  • Discovery of E Name: Compound Interest – Interest Paid on The
    Discovery of E Name: Compound Interest – interest paid on the principal of an investment and any previously earned interest. A -> P-> r-> n-> t-> 1) An investment account pays 4.2% annual interest compounded monthly. If $2500 is invested in this account, what will be the balance after 15 years? Set up the equation: A = 2) Find the balance of an account after 7 years if $700 is deposited into an account paying 4.3% interest compounded monthly. John Bernoulli discovered something by studying a question about compound interest. (Who is John Bernoulli? Johann Bernoulli (27 July 1667 – 1 January 1748) was a Swiss mathematician and was one of the many prominent mathematicians in the Bernoulli family. He is known for his contributions to infinitesimal calculus and educated Leonhard Euler in his youth. (Source: Wikipedia) Ready to be John Bernoulli? An account starts with $1.00 and pays 100 percent interest per year. If the interest is credited once, at the end of the year, the value of the account at year-end will be $2.00. What happens if the interest is computed and credited more frequently during the year? Write your prediction here: ______________________________________________________ ___________________________________________________________________________ Let’s do solve this mathematically using compound interest rate formula. Frequency (number of compounding Equation Total periods each year.) Once a year $2.00 Twice a year $2.25 Yay! We made $0.25 more! Compound bimonthly Compound monthly Compound weekly Compound daily Compound hourly Compound secondly What did you observe from the above table? Can we ever reach $3? _________________________ ________________________________________________________________________________ Bernoulli noticed that this sequence approaches a limit with larger n and, thus, smaller compounding intervals.
    [Show full text]
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • Section 8.8: Improper Integrals
    Section 8.8: Improper Integrals One of the main applications of integrals is to compute the areas under curves, as you know. A geometric question. But there are some geometric questions which we do not yet know how to do by calculus, even though they appear to have the same form. Consider the curve y = 1=x2. We can ask, what is the area of the region under the curve and right of the line x = 1? We have no reason to believe this area is finite, but let's ask. Now no integral will compute this{we have to integrate over a bounded interval. Nonetheless, we don't want to throw up our hands. So note that b 2 b Z (1=x )dx = ( 1=x) 1 = 1 1=b: 1 − j − In other words, as b gets larger and larger, the area under the curve and above [1; b] gets larger and larger; but note that it gets closer and closer to 1. Thus, our intuition tells us that the area of the region we're interested in is exactly 1. More formally: lim 1 1=b = 1: b − !1 We can rewrite that as b 2 lim Z (1=x )dx: b !1 1 Indeed, in general, if we want to compute the area under y = f(x) and right of the line x = a, we are computing b lim Z f(x)dx: b !1 a ASK: Does this limit always exist? Give some situations where it does not exist. They'll give something that blows up.
    [Show full text]
  • HW 3.1.2 Compound Interest
    HW 3.1.2: Compound Interest n Compounds per year Compound Continuously A= Amount nt P = Principal (initial investment) ⎛⎞r rt AP=+1 A = Pe r = APR (annual percent rate, decimal) ⎜⎟n ⎝⎠ t = number of years n = number of compounds per year Do each of the bullets for Exercises 1-6. • Find the amount, A(t) , in the account as a function of the term of the investment t in years. • Determine how much is in the account after 5 years, 10 years, and 30 years. Round your answers to the nearest cent. • Determine how long will it take for the initial investment to double. Round your answer to the nearest year. 1. $500 is invested in an account, which offers 0.75%, compounded monthly. 2. $500 is invested in an account, which offers 0.75%, compounded continuously. 3. $1000 is invested in an account, which offers 1.25%, compounded quarterly. 4. $1000 is invested in an account, which offers 1.25%, compounded continuously. 5. $5000 is invested in an account, which offers 2.125%, compounded daily. 6. $5000 is invested in an account, which offers 2.125%, compounded continuously. 7. Look back at your answers to Exercises 1-6. What can be said about the differences between monthly, daily, or quarterly compounding and continuously compounding the interest in those situations? 8. How much money needs to be invested now to obtain $2000 in 3 years if the interest rate in a savings account is 0.25%, compounded continuously? Round your answer to the nearest cent. 9. How much money needs to be invested now to obtain $5000 in 10 years if the interest rate in a CD is 2.25%, compounded monthly? Round your answer to the nearest cent.
    [Show full text]
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • Year 6 Local Linearity and L'hopitals.Notebook December 04, 2018
    Year 6 Local Linearity and L'Hopitals.notebook December 04, 2018 New Divider! ­ Application of Derivatives: Local Linearity and L'Hopitals Local Linear Approximation Do Now: For each sketch the function, write the equation of the tangent line at x = 0 and include the tangent line in your sketch. 1) 2) In general, if a function f is differentiable at an x, then a sufficiently magnified portion of the graph of f centered at the point P(x, f(x)) takes on the appearance of a ______________ line segment. For this reason, a function that is differentiable at x is sometimes said to be locally linear at x. 1 Year 6 Local Linearity and L'Hopitals.notebook December 04, 2018 How is this useful? We are pretty good at finding the equations of tangent lines for various functions. Question: Would you rather evaluate linear functions or crazy ridiculous functions such as higher order polynomials, trigonometric, logarithmic, etc functions? Evaluate sec(0.3) The idea is to use the equation of the tangent line to a point on the curve to help us approximate the function values at a specific x. Get it??? Probably not....here is an example of a problem I would like us to be able to approximate by the end of the class. Without the use of a calculator approximate . 2 Year 6 Local Linearity and L'Hopitals.notebook December 04, 2018 Local Linear Approximation General Proof Directions would say, evaluate f(a). If f(x) you find this impossible for some y reason, then that's how you would recognize we need to use local linear approximation! You would: 1) Draw in a tangent line at x = a.
    [Show full text]
  • Automatic Linearity Detection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Mathematical Institute Eprints Archive Report no. [13/04] Automatic linearity detection Asgeir Birkisson a Tobin A. Driscoll b aMathematical Institute, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK. [email protected]. Supported for this work by UK EPSRC Grant EP/E045847 and a Sloane Robinson Foundation Graduate Award associated with Lincoln College, Oxford. bDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA. [email protected]. Supported for this work by UK EPSRC Grant EP/E045847. Given a function, or more generally an operator, the question \Is it lin- ear?" seems simple to answer. In many applications of scientific computing it might be worth determining the answer to this question in an automated way; some functionality, such as operator exponentiation, is only defined for linear operators, and in other problems, time saving is available if it is known that the problem being solved is linear. Linearity detection is closely connected to sparsity detection of Hessians, so for large-scale applications, memory savings can be made if linearity information is known. However, implementing such an automated detection is not as straightforward as one might expect. This paper describes how automatic linearity detection can be implemented in combination with automatic differentiation, both for stan- dard scientific computing software, and within the Chebfun software system. The key ingredients for the method are the observation that linear operators have constant derivatives, and the propagation of two logical vectors, ` and c, as computations are carried out.
    [Show full text]
  • Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder
    Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 11, 2018 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function that predicts what the output should be, given the input. Prediction Functions Linear regression: f(x) = wTx + b Linear classification (perceptron): f(x) = 1, wTx + b ≥ 0 -1, wTx + b < 0 Need to learn what w should be! Learning Parameters Goal is to learn to minimize error • Ideally: true error • Instead: training error The loss function gives the training error when using parameters w, denoted L(w). • Also called cost function • More general: objective function (in general objective could be to minimize or maximize; with loss/cost functions, we want to minimize) Learning Parameters Goal is to minimize loss function. How do we minimize a function? Let’s review some math. Rate of Change The slope of a line is also called the rate of change of the line. y = ½x + 1 “rise” “run” Rate of Change For nonlinear functions, the “rise over run” formula gives you the average rate of change between two points Average slope from x=-1 to x=0 is: 2 f(x) = x -1 Rate of Change There is also a concept of rate of change at individual points (rather than two points) Slope at x=-1 is: f(x) = x2 -2 Rate of Change The slope at a point is called the derivative at that point Intuition: f(x) = x2 Measure the slope between two points that are really close together Rate of Change The slope at a point is called the derivative at that point Intuition: Measure the
    [Show full text]
  • Transformations, Polynomial Fitting, and Interaction Terms
    FEEG6017 lecture: Transformations, polynomial fitting, and interaction terms [email protected] The linearity assumption • Regression models are both powerful and useful. • But they assume that a predictor variable and an outcome variable are related linearly. • This assumption can be wrong in a variety of ways. The linearity assumption • Some real data showing a non- linear connection between life expectancy and doctors per million population. The linearity assumption • The Y and X variables here are clearly related, but the correlation coefficient is close to zero. • Linear regression would miss the relationship. The independence assumption • Simple regression models also assume that if a predictor variable affects the outcome variable, it does so in a way that is independent of all the other predictor variables. • The assumed linear relationship between Y and X1 is supposed to hold no matter what the value of X2 may be. The independence assumption • Suppose we're trying to predict happiness. • For men, happiness increases with years of marriage. For women, happiness decreases with years of marriage. • The relationship between happiness and time may be linear, but it would not be independent of sex. Can regression models deal with these problems? • Fortunately they can. • We deal with non-linearity by transforming the predictor variables, or by fitting a polynomial relationship instead of a straight line. • We deal with non-independence of predictors by including interaction terms in our models. Dealing with non-linearity • Transformation is the simplest method for dealing with this problem. • We work not with the raw values of X, but with some arbitrary function that transforms the X values such that the relationship between Y and f(X) is now (closer to) linear.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • Understanding Student Use of Differentials in Physics Integration Problems
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020108 (2013) Understanding student use of differentials in physics integration problems Dehui Hu and N. Sanjay Rebello* Department of Physics, 116 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601, USA (Received 22 January 2013; published 26 July 2013) This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second- semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics. DOI: 10.1103/PhysRevSTPER.9.020108 PACS numbers: 01.40.Àd mathematical symbols [3]. For instance, mathematicians I. INTRODUCTION often use x; y asR variables and the integrals are often written Mathematical integration is widely used in many intro- in the form fðxÞdx, whereas in physics the variables ductory and upper-division physics courses.
    [Show full text]