Making a Game of Chess Sound
Total Page:16
File Type:pdf, Size:1020Kb
Making a game of chess sound By Elizabeth Catharina du Toit Thesis presented in fulfilment of the requirements for the degree of Master of Music at Stellenbosch University Supervisor: Dr Ralf Alexander Kohler December 2016 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: ................................................ Date: ................................................ Copyright © 2016 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Abstract This thesis discusses the correlations between chess and music via a mathematical basis. The reason for this study was to explore the ontological status of Western Classical Music representation by substituting it with the representation of chess, in order to see whether Western Classical Music could be represented in other logical systems. This study resulted in the sounding of the game of chess. It explores the music notation by comparing it to and exchanging it with chess representation. The way in which this was accomplished was by creating musical variables to represent chess moves, notation and other entities of chess. Thereafter the sounds were implemented into a computer programme which was created in the Java language. The variables were coded into the programme which was created for this thesis and was named The Sound of Chess Programme. Three chess games including Scholars Mate, an intermediate game and lastly a game by Kasparov were coded and made to sound via The Sound of Chess Programme. The sounds of all three games were analysed. In the final sounds one could hear positional structure of the chess games, as well as which chess pieces were moving. The results of this study showed that any non-musical logical system can represent musical phenomena. This means that 21st century musicians may have many representational systems at their disposal via the use of various logical systems which could be made to sound. The addition of sound to logical representations can also add new methods to understanding of musical systems, as by hearing the entities one can interact with the content differently. iii Stellenbosch University https://scholar.sun.ac.za Opsomming Hierdie navorsing ondersoek die ooreenkomste tussen skaak en musiek deur gebruik van ʼn wiskundige raamwerk. Die rede vir hierdie studie is om die ontologiese status van musiekvoorstelling te deurgrond deur dit te vervang met die voorstelling van skaak om sodanig vas te stel of musiek deur ander logiese sisteme voorgestel kan word. Hierdie studie het gelei tot die klank van skaak. Standaard Westerse Musieknotasie is vergelyk en verruil met skaaknotasie. Musiekveranderlikes is geskep om skaakskuiwe, skaaknotasie en ander elemente van skaak voor te stel, waarna klanke toegevoeg is tot ‘n Java rekenaarprogramtaal. Die veranderlikes is in die program The Sound of Chess Programme, wat vir hierdie studie ontwerp is, ingevoer. Drie skaakspelle insluitende “Scholars Mate”, ʼn intermediêre program en ʼn spel van Kasparov is gekodeer en verklank deur die program. Die klankbaan van al drie spelle is ontleed. Posisionele strukture, skuiwe en identiteite van die stukke kon in die klanke waargeneem word. Die resultate van die studie toon dat enige nie-musikale logiese sisteem musiekeienskappe kan oordra. Dit beteken dat 21ste eeuse musici deur die gebruik van logiese sisteme wat verklank word, verskeie voorstellingstegnieke tot hul beskikking het. Deur na die eienskappe van die klanke te luister, kan daar op verskeie maniere interaksie met die inhoud plaasvind. iv Stellenbosch University https://scholar.sun.ac.za Acknowledgments I would like to express my sincere gratitude to my supervisor Dr Ralf Alexander Kohler for the continuous support of my MMus research study as well as his motivation and the vast contribution of his knowledge. I have thoroughly enjoyed lectures and supervisions with Dr Kohler and I have learned copious numbers of new study, research and writing methods. My sincere thanks also go to Misha Beare and Nicholas Hilarides who provided me with many hours of help and guidance with regards to the computer programming for this study. I would like to thank Prof Caroline van Niekerk, Badja Zaacks and Jennifer Ritchie for assistance with the editing of my thesis. Thank you to my family: my parents, aunts, uncles, godfather and grandfather for supporting me spiritually and financially throughout the writing of my thesis and for always encouraging me with regards to my music and chess endeavours. Lastly, I am immensely appreciative to Wendy Ackerman for generously paying for my Masters Degree. Learning is the most incredible gift that one can receive and I thank her greatly. v Stellenbosch University https://scholar.sun.ac.za Table of Contents Abstract ................................................................................................................................ iii Opsomming ......................................................................................................................... iv Acknowledgments ............................................................................................................... v Chapter 1 ................................................................................................................... 1 Introduction and personal motivation, statement of the problem, theoretical reference points, methodology and chapter outline ............................................... 1 1.1 Introduction and personal motivation ................................................................. 1 1.2 Chess and music................................................................................................... 3 1.3 Research statement ............................................................................................. 7 1.4 Goals and objectives ............................................................................................ 8 1.5 Theoretical framework .......................................................................................... 8 1.6 Methodology ........................................................................................................ 10 1.7 Limitations of the research ................................................................................ 14 1.8 Chapter outline .................................................................................................... 16 Chapter 2 ................................................................................................................. 23 Correlations and comparisons between chess and music .................................. 23 2.1 History of chess ................................................................................................... 23 2.2 Western music notation ..................................................................................... 26 2.2.1 Gregorian chant ............................................................................................... 26 2.2.2 Tablature ........................................................................................................... 29 2.2.3 Standard Western Music Notation ................................................................ 30 2.2.4 Computerised music and its challenges ...................................................... 31 2.2.5 Changing Standard Western Music Notation ............................................. 33 2.3 Chess notation..................................................................................................... 36 2.3.1 A brief history of chess notation .................................................................... 36 2.3.2 Philipp Stamma................................................................................................ 37 2.3.3 François Andrè Philidor .................................................................................. 38 2.3.4 Standard Algebraic Notation ......................................................................... 39 2.3.5 Computerised chess notation ........................................................................ 40 2.4 Computer chess .................................................................................................. 42 vi Stellenbosch University https://scholar.sun.ac.za 2.5 Matthias Wüllenweber ........................................................................................ 46 2.6.1 Fritz .................................................................................................................... 47 2.6.2 Ludwig ............................................................................................................... 48 2.6 Sounding chess ................................................................................................... 49 2.6.1 “Chess” the musical ........................................................................................ 51 Chapter 3 ................................................................................................................. 54 Finding a conversion formula ...................................................................................... 54 3.1 Computer programming languages ................................................................