Saccharopolyspora Sp. in Iraq

Total Page:16

File Type:pdf, Size:1020Kb

Saccharopolyspora Sp. in Iraq East African Scholars Journal of Biotechnology and Genetics Abbreviated Key Title: East African Scholars J Biotechnol Genet ISSN: 2663-189X (Print) & ISSN : 2663-7286 (Online) Published By East African Scholars Publisher, Kenya Volume-1 | Issue-.4 | July-Aug -2019 | Research Article Isolation, characterization and antibacterial activity of a Rare Actinomycete: Saccharopolyspora sp. In Iraq Prof. Dr. Mohsen Hashim Risan 1, Rusul Alaa Jafar1 and Shams Ahmed Subhi2 1College of Biotechnology, Al-Nahrain University, Iraq 2Al-Turath University College, Iraq *Corresponding Author Prof. Dr. Mohsen Hashim Risan Abstract: The aimed of the study is isolating and identifying the rare actinomycetes species in Iraq, that are capable of producing antimicrobial agent. Thirty-three colonies were found. Colonies having characteristic features such as powdery appearance with convex, concave or flat surface and color ranging from buff, brown, pink, red, white, yellow and gray were selected. Sub-cultured on ISP2 were supplemented with 12 % (w/v) NaCl for growth, and incubation of plates for 10-12 days at 28°C, only five isolates demonstrated cultural characteristics similar to that of genus Saccharopolyspora sp. Five isolates were selected and purified by pure culture techniques. All isolates were given a number as AW12, AW 4, MK 7, AW 9 and AW 2. The isolates were identified as Saccharopolyspora sp. based on their morphological, physiological and biochemical characteristics. All Saccharopolyspora isolates were screened for their antibacterial activity on malt extract yeast extract agar medium (ISP2) using scross-streak technique. The highest activities were shown by AW12 isolate against Staphylococcus aureus with inhibition zone diameters 17 mm. Keywords: rare actinomycetes, Saccharopolyspora, antibacterial, Iraq. INTRODUCTION pseudonocardiaceae belong to rare actinomycetes. This Actinomycetes are filamentous bacteria, family currently contains seven genera, (Ventura et al., 2007). The soil actinomycetes produce Actinopolyspora, Amycolata, Amycolatopsis, a volatile compound called geosmin, which literally Kibdelosporangium, Pseudonocardia, translates to “earth smell” of healthy soil (Gust et al., Saccharomonospora and Saccharopolyspora. It 2003; Sprusansky et al., 2005). Actinomycetes are includes several cultures with industrial interest as Gram-positive bacteria. Although Streptomyces species antibiotic producers (erythromycin, vancomycin, still promise to remain fruitful sources of new rifamycin) or in bioconversion processes (Okazaki et antibiotics (Amin et al., 2016; Risan et al., 2016; Risan al., 1983). All of pseudonocardiaceae members are et al., 2017; Risan et al., 2018; Al-Rubaye et al., aerobic and catalase-positive, but exhibit a wide range 2018a, b). The Recent tendency has shown more of different physiologies (autotrophic, thermophilic, frequent detection of a number of new antibiotics from halophilic, etc.) (Embley 1992). micro-organisms other than Streptomyces as rare Pseudonocardiaceae family includes genus Actinomycetes. Rare actinomycetes once isolated from Saccharopolyspora (Lazzarini et al., 2000; Tiwari and soils are much easier to die than Streptomyces species. Gupta, 2013). The genus Saccharopolyspora was first Rare actinomycetes, show much slower growth than described by Lacey and Goodfellow (1975). The genus Streptomyces species. Some require vitamin and biotin Saccharopolyspora includes species: for growth and most of them have more complex Saccharopolyspora erythraea (Labeda, 1987), nutritional requirements (Lechevalier and Lechevalier Saccharopolyspora gregorii and Saccharopolyspora 1981). The characteristics of rare actinomycetes are hordei (Goodfellow et al., 1989), Saccharopolyspora slower growth, more complex nutritional requirements, rectivirgula and Saccharopolyspora taberi (Korn- poorer sporulation and less stable as for preservation Wendisch et al., 1989), Saccharopolyspora spinosa (Kroppenstedt and Goodfellow 2006). The family (Mertz and Yao, 1990), Saccharopolyspora hirsuta Quick Response Code Journal homepage: Copyright @ 2019: This is an open-access http://www.easpublisher.com/easjbg/ article distributed under the terms of the Creative Commons Attribution license which Article History permits unrestricted use, distribution, and Received: 15.06.2019 reproduction in any medium for non Accepted: 25.06.2019 commercial use (NonCommercial, or CC-BY- Published: 10.07.2019 NC) provided the original author and source are credited. Published By East African Scholars Publisher, Kenya 49 Mohsen Hashim Risan et al., East African Scholars J Biotechnol Genet; Vol-1, Iss-4 (July-Aug, 2019): 49-60 (Lacey and Goodfellow, 1975), Saccharopolyspora were obtained from Central Public Health Labrotory in spinosporotrichia (Zhou et al., 1998), Baghdad city. They were maintained on Mueller- Saccharopolyspora flava and Hinton (MH), plates at 4ºC. Stock cultures were kept in Saccharopolyspora thermophila (Lu et al., 2001), 20% glycerol at -70ºC. Saccharopolyspora antimicrobica (Yuan et al., 2008), Saccharopolyspora cebuensis (Pimentel-Elardo et al., Isolation of Actinomycetes 2008), Saccharopolyspora shandongensis (Zhang et al., Each soil sample was air dried at room 2008), Saccharopolyspora endophytica (Qin et al., temperature and sieved through a 2 mm pore size sieve 2008), Saccharopolyspora halophila (Tang et al., to get rid of large debris. The sieved soil was used for 2009a), Saccharopolyspora jiangxiensis (Zhang et al., the isolation purpose. One g was suspended in 99 ml 2009), Saccharopolyspora qujiaojingensis (Tang et sterile distilled water and incubated at 28°C with al., 2009b), Saccharopolyspora rosea (Yassin, 2009), shaking at 180 rpm for 1 h. (Oskay et al., 2004), 0.1 ml Saccharopolyspora tripterygii (Li et al., 2009) and of each solution, at dilutions of 10-4-10-5, then spread Saccharopolyspora patthalungensis (Duangmal et al., on Glycerol yeast extract agar medium (GYEA) (2g 2010). Yeast extract, 10ml Glycerol, 20 agar and 1 L water) supplemented with tetracycline 50 μg/ml and 50 μg/ml Members of this genus are aerobic, Gram- nystatin, to prevent growth of other bacteria and fungi, positive, non-acid-fast organisms with substrate hyphae respectively. (The pH value of the medium was that either fragment into rod-shaped elements, do not adjusted to 7-7.2 and then sterilized in an autoclave at fragment or are transformed partially into chains of 121°C for 15 minutes), then incubated at 28°C for 8-12 spores (Korn-Wendisch et al., 1989). The combination days still actinomycetes colonies appear. (El-Nakeeb of a green to bluish green color of the aerial and and Lechevalier, 1963; Kuster and Williams, 1964; substrate mycelia and monosporic morphology appears Qasim and Risan, 2017). After the incubation period, to be a good indication that an isolate belongs to the the plates were examined for typical actinomycetes genus Saccharomonospora. The genus encompasses colonies, which had regular round, small, opaque, 27 recognized species of which 17 were identified in compact, frequently pigmented with white, brown, the last 10 years. Most of these species were isolated gray-pink, or other colors, the colonies were examined from soil samples (Cheng et al., 2013), saline lakes under a light microscope to observe their morphology (Tang et al., 2009) and endophytic associations (Qin et and distinguished from fungi colonies. The isolated al., 2008). Furthermore, some members of actinomycetes were re-cultured and stored at 4°C for Saccharopolyspora have been recovered from further study (Venkateswarlu et al., 2000; Gesheva et symbiotic associations with marine sponges. So the aim al., 2005). of the study is isolating and identifying the rare actinomycetes species in Iraq, that are capable of Purification And Identification Of Actinomycetes producing antimicrobial agent. spp After incubation, plates were examined for the MATERIALS AND METHODS appearance of actinomycetes colonies. Colonies of Sample Collection actinomycetes were recognized by their microscopic Soil samples were collected from two characteristics (optical microscopy, aerial, substrate provinces in 2018, Baghdad city (Al-Jadriya) and Wasit mycelium colour and Gram’s stain). The stock cultures province (Al - Noamaniya). The samples were taken at were maintained and transferred on International a depth of 5-7 centimeters below the surface, where Streptomyces project Medium slants (ISP-2 ) (4g Yeast most of the microbial activity takes place, and thus extract, 10g Malt extract, 4g Dextrose, 20 agar and 1 L where most of the bacterial population is concentrated. water) to obtain pure colonies used for identification Soil samples (100 g sample of each soil type) were (Nonoh et al., 2010 ; Whitman et al., 2012). Once in collected by using clean, dry and sterile four months and stored at 4°C. Polyethylene bags along with sterile spatula, marking pen, rubber band and other accessories. The site Identification by Cultural Characterizations: selection was done by taking care of the point where The identification of Saccharopolyspora widely varying characteristics as possible with regard to isolates were based largely upon the morphological the organic matter, moisture content, and particle size observations. It includes some basic observations, and colour of soil and to avoid contamination as far as Gram’s stain, produced Substrate mycelia (Branched or possible. Samples were stored in boxes and transported Fragments), spores on substrate mycelia, colors of the to the laboratory
Recommended publications
  • Actinobacteria in Algerian Saharan Soil and Description Sixteen New
    Revue ElWahat pour les Recherches et les Etudes Vol.7n°2 (2014) : 61 – 78 Revue ElWahat pour les recherches et les Etudes : 61 – 78 ISSN : 1112 -7163 Vol.7n°2 (2014) http://elwahat.univ-ghardaia.dz Diversity of Actinobacteria in Algerian Saharan soil and description of sixteen new taxa Bouras Noureddine 1,2 , Meklat Atika 1, Boubetra Dalila 1, Saker Rafika 1, Boudjelal Farida 1, Aouiche Adel 1, Lamari Lynda 1, Zitouni Abdelghani 1, Schumann Peter 3, Spröer Cathrin 3, Klenk Hans -Peter 3 and Sabaou Nasserdine 1 1- Affiliation: Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria; [email protected] 2- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria; 3- Leibniz Institute DSMZ - Germ an Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany. Abstract _ The goal of this study was to investigate the biodiversity of actinobacteria in Algerian Saharan soils by using a polyphasic taxonomic approach based on the phenotypic and molecular studies (16S rRNA gene sequence analysis and DNA-DNA hybridization ). A total of 323 strains of actinobacteria were isolated from different soil samples, by a dilution agar plating method, using selective isolation media without or with 15-20% of NaCl (for halophilic strains). The morphological and chemotaxonomic characteristics (diaminopimelic acid isomers, whole-cell sugars, menaquinones, cellular fatty acids and diagnostic phospholipids) of the strains were consistent with those of members of the genus Saccharothrix , Nocardiopsis , Actinopolyspora , Streptomonospora , Saccharopolyspora , Actinoalloteichus , Actinokineospora and Prauserella .
    [Show full text]
  • Successful Drug Discovery Informed by Actinobacterial Systematics
    Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
    1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1
    [Show full text]
  • Pseudonocardia Parietis Sp. Nov., from the Indoor Environment
    This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://ijs.sgmjournals.org, and is freely available without a subscription 24 months after publication. First published in: Int J Syst Evol Microbiol, 2009. 59(10) 2449-52. doi:10.1099/ijs.0.009993-0 Pseudonocardia parietis sp. nov., from the indoor environment J. Scha¨fer,1 H.-J. Busse2 and P. Ka¨mpfer1 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, P. Ka¨mpfer Germany [email protected] 2Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, giessen.de Austria A Gram-positive, rod-shaped, non-endospore-forming, mycelium-forming actinobacterium (04- St-002T) was isolated from the wall of an indoor environment colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 04-St-002T was shown to belong to the family Pseudonocardiaceae, and to be most closely related to Pseudonocardia antarctica (99.2 %) and Pseudonocardia alni (99.1 %).
    [Show full text]
  • Saccharopolyspora Flava Sp. Nov. and Saccharopolyspora Thermophila Sp
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 319–325 Printed in Great Britain Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp. nov., novel actinomycetes from soil Zhitang Lu,1† Zhiheng Liu,1 Liming Wang,1 Yamei Zhang,1 Weihong Qi1 and Michael Goodfellow2 Author for correspondence: Zhiheng Liu. Tel: j86 10 6255 3628. Fax: j86 10 6256 0912. e-mail: zhliu!sun.im.ac.cn 1 Institute of Microbiology, The generic position of two aerobic, Gram-positive, non-acid–alcohol-fast Chinese Academy of actinomycetes was established following the isolation of their PCR-amplified Sciences, Beijing 100080, People’s Republic of China 16S rRNA genes and alignment of the resultant sequences with the corresponding sequences from representatives of the families 2 Department of Agricultural and Actinosynnemataceae and Pseudonocardiaceae. The assignment of the Environmental Science, organisms to the genus Saccharopolyspora was strongly supported by University of Newcastle, chemotaxonomic and morphological data. The strains were distinguished both Newcastle upon Tyne NE1 7RU, UK from one another and from representatives of validly described Saccharopolyspora species on the basis of a number of phenotypic properties. It is proposed that the organisms, strains 07T (l AS4.1520T l IFO 16345T l JCM 10665T) and 216T (l AS4.1511T l IFO 16346T l JCM 10664T), be classified in the genus Saccharopolyspora as Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp. nov., respectively. Keywords: Saccharopolyspora flava sp. nov., Saccharopolyspora thermophila sp. nov., polyphasic taxonomy INTRODUCTION these taxa were excluded from the family by Warwick et al. (1994), who considered that they might form a The application of the polyphasic taxonomic approach ‘sister’ group to the Pseudonocardiaceae clade.
    [Show full text]
  • Transition from Unclassified Ktedonobacterales to Actinobacteria During Amorphous Silica Precipitation in a Quartzite Cave Envir
    www.nature.com/scientificreports OPEN Transition from unclassifed Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment D. Ghezzi1,2, F. Sauro3,4,5, A. Columbu3, C. Carbone6, P.‑Y. Hong7, F. Vergara4,5, J. De Waele3 & M. Cappelletti1* The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical–chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The frst stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the fnal coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves. Silicon is one of the most abundant elements in the Earth’s crust and can be broadly found in the form of silicates, aluminosilicates and silicon dioxide (e.g., quartz, amorphous silica).
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Complete Genome Sequence of Jiangella Gansuensis Strain YIM 002T (DSM 44835T), the Type Species of the Genus Jiangella and Source of New Antibiotic Compounds
    UC Davis UC Davis Previously Published Works Title Complete genome sequence of Jiangella gansuensis strain YIM 002T (DSM 44835T), the type species of the genus Jiangella and source of new antibiotic compounds. Permalink https://escholarship.org/uc/item/34s6p01n Journal Standards in genomic sciences, 12(1) ISSN 1944-3277 Authors Jiao, Jian-Yu Carro, Lorena Liu, Lan et al. Publication Date 2017 DOI 10.1186/s40793-017-0226-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Jiao et al. Standards in Genomic Sciences (2017) 12:21 DOI 10.1186/s40793-017-0226-6 SHORTGENOMEREPORT Open Access Complete genome sequence of Jiangella gansuensis strain YIM 002T (DSM 44835T), the type species of the genus Jiangella and source of new antibiotic compounds Jian-Yu Jiao1, Lorena Carro2, Lan Liu1, Xiao-Yang Gao3, Xiao-Tong Zhang1, Wael N. Hozzein4,12, Alla Lapidus5,6, Marcel Huntemann7, T. B. K. Reddy7, Neha Varghese7, Michalis Hadjithomas7, Natalia N. Ivanova7, Markus Göker8, Manoj Pillay9, Jonathan A. Eisen10, Tanja Woyke7, Hans-Peter Klenk2,8*, Nikos C. Kyrpides7,11 and Wen-Jun Li1,13* Abstract Jiangella gansuensis strain YIM 002T is the type strain of the type species of the genus Jiangella, which is at the present time composed of five species, and was isolated from desert soil sample in Gansu Province (China). The five strains of this genus are clustered in a monophyletic group when closer actinobacterial genera are used to infer a 16S rRNA gene sequence phylogeny. The study of this genome is part of the Genomic Encyclopedia of Bacteria and Archaea project, and here we describe the complete genome sequence and annotation of this taxon.
    [Show full text]
  • A Genome Compendium Reveals Diverse Metabolic Adaptations of Antarctic Soil Microorganisms
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.239558; this version posted August 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. August 3, 2020 A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms Maximiliano Ortiz1 #, Pok Man Leung2 # *, Guy Shelley3, Marc W. Van Goethem1,4, Sean K. Bay2, Karen Jordaan1,5, Surendra Vikram1, Ian D. Hogg1,7,8, Thulani P. Makhalanyane1, Steven L. Chown6, Rhys Grinter2, Don A. Cowan1 *, Chris Greening2,3 * 1 Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0002, South Africa 2 Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia 3 School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia 4 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 6 Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia 7 School of Science, University of Waikato, Hamilton 3240, New Zealand 8 Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay, NU X0B 0C0, Canada # These authors contributed equally to this work. * Correspondence may be addressed to: A/Prof Chris Greening ([email protected]) Prof Don A. Cowan ([email protected]) Pok Man Leung ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.239558; this version posted August 6, 2020.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]