U.S. Army Corps of Engineers Reservoir Sedimentation in the Context of Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Army Corps of Engineers Reservoir Sedimentation in the Context of Climate Change 1 USACE RESERVOIR SEDIMENTATION IN THE CONTEXT OF CLIMATE CHANGE AVAILABLE RESERVOIR SEDIMENT INFORMATION Preferred Citation: Pinson, A., B. Baker, P. Boyd, R. Grandpre, K.D. White, and M. Jonas. (2016) U.S. Army Corps of Engineers Reservoir Sedimentation in the Context of Climate Change. Civil Works Technical Report, CWTS 2016-05, U.S. Army Corps of Engineers: Washington DC. i USACE RESERVOIR SEDIMENTATION IN THE CONTEXT OF CLIMATE CHANGE AVAILABLE RESERVOIR SEDIMENT INFORMATION EXECUTIVE SUMMARY The US Army Corps of Engineers (USACE) is the largest operator of dams in the United States. Each USACE dam was planned, designed and built to provide specific benefits to the American public, including navigation, flood risk reduction, hydropower generation, recreation, and water supply. Most of the USACE dams have operated for more than 50 years, with some approaching 100 years of operation. Sedimentation impacts all of these dams to varying degrees by reducing reservoir volumes over time. Even though sedimentation was taken into account in design, there may be gradual loss of functionality with respect to a dam's authorized purpose(s) over time. Since 2011, the USACE Civil Works Strategic Plan has stressed sustainable solutions for the 21st century. For our reservoirs, this requires that we take into account all of the factors that impact their performance and reliability. Among these is climate change, which has been identified as a major cause of future vulnerability to reservoirs due to its role in changing sedimentation patterns. Both observed and projected hydroclimate trends impact the rate of sediment delivery to reservoirs. Important drivers include increasing heat waves, changes in drought frequency and magnitude, altered freeze-thaw cycles, changes in snow volume and the onset of snowmelt, increased heavy precipitation, and changes in the frequency, magnitude, and duration of floods. A reservoir storage baseline is necessary to determine which reservoirs are vulnerable to increased (or decreased) sedimentation resulting from past and future changes. As part of the effort to set a reservoir sediment baseline, six USACE districts were selected for detailed analysis as a representative sample of reservoirs in a variety of environmental settings. Some reservoirs have experienced impacts from sedimentation, resulting in a loss of storage capacity for water supply, flood risk reduction, recreation and other authorized purposes. For the majority of reservoirs, repeated, accurate surveys are vital to determining current sedimentation status from which to estimate future decreases in reservoir storage due to sedimentation. Information obtained from the pilot districts was used to develop a web portal to collect and house reservoir sediment information from across the Nation, including analytical data supporting efficient and sustainable reservoir sediment management. This progress report summarizes the findings of the six pilot districts and the information housed in the new web portal. We provide recommendations on how to best achieve planned reductions in existing data gaps and how to identify the minimum survey frequency required to accurately project sedimentation impacts to reservoir project benefits. Only by understanding the rate at which sedimentation is encroaching on the authorized reservoir purposes can USACE develop plans to sustainably manage its reservoirs and maximize reservoir service life. ii USACE RESERVOIR SEDIMENTATION IN THE CONTEXT OF CLIMATE CHANGE AVAILABLE RESERVOIR SEDIMENT INFORMATION This page is intentionally left blank. iii USACE RESERVOIR SEDIMENTATION IN THE CONTEXT OF CLIMATE CHANGE AVAILABLE RESERVOIR SEDIMENT INFORMATION TABLE OF CONTENTS Executive Summary ...................................................................................................................... ii Table of Contents ......................................................................................................................... iv List of Figures ............................................................................................................................ vi List of Tables ............................................................................................................................ vii Introduction ................................................................................................................................... 8 Reservoir Sustainability and the Need for Reservoir Sedimentation Planning ...........................8 The Climate Preparedness and Resilience (CPR) Program .......................................................10 Enhancing Reservoir Sedimentation Information (RSI) for Climate Preparedness and Resilience ...................................................................................................................................11 Overview of Climate Change Impacts on Reservoir Sedimentation ...................................... 12 Review and Analysis of Reservoir Sedimentation Information (RSI) ................................... 17 Overview ....................................................................................................................................17 RSI Data Types ..........................................................................................................................17 RSI Initial Data Collection Methods .........................................................................................18 Summary by RSI Category ........................................................................................................22 Developing an RSI Update Strategy .......................................................................................... 30 RSI Update Strategy Overview ..................................................................................................30 RSI Baseline Data ......................................................................................................................30 Project Data Needs Related to Authorized Purposes .................................................................30 Navigation ..............................................................................................................................31 Flood Risk Management ........................................................................................................32 Aquatic Ecosystem Restoration .............................................................................................33 Hydropower ...........................................................................................................................34 Recreation ..............................................................................................................................35 Water Supply .........................................................................................................................35 Dry Dams ...............................................................................................................................36 Other Determinants of RSI Data Needs .................................................................................37 Geomorphology and Regional Characteristics ..................................................................37 Size .....................................................................................................................................37 Shape ..................................................................................................................................38 Basin Schemes ...................................................................................................................38 Data Needs Based on Reservoir Sustainability ..........................................................................39 Understanding Changes Over Time .......................................................................................39 Sediment Yield .......................................................................................................................40 Wildfire ..................................................................................................................................41 iv USACE RESERVOIR SEDIMENTATION IN THE CONTEXT OF CLIMATE CHANGE AVAILABLE RESERVOIR SEDIMENT INFORMATION Sediment Management ...........................................................................................................43 RSI Data Collection ...................................................................................................................45 Data Collection Methods ...........................................................................................................46 Range and Contour Methods .............................................................................................46 Topographic Data Resolution ............................................................................................47 Bathymetric and Hydrographic Survey Techniques ..........................................................48 Innovative Techniques .......................................................................................................48 Datum Requirements .........................................................................................................49 Sediment Sampling ............................................................................................................49 Data Collection Frequency ........................................................................................................50
Recommended publications
  • 1 Literature Review Costs and Benefits of Pick-Sloan Projects on North Dakota Paper Submitted to the Missouri River Joint Water
    Literature review Costs and Benefits of Pick-Sloan Projects on North Dakota Paper Submitted to the Missouri River Joint Water Board In completion of Step 1 of the Consultancy Robert R. Hearne Professor Department of Agribusiness and Applied Economics North Dakota State University 14 February 2020 This literature review has been prepared under contract from the Missouri River Joint Water Board. The purpose of this review is to provide an understanding of the previously documented research pertinent to the costs and benefits of the Pick-Sloan program on North Dakota. The Missouri River Joint Water Board has remained concerned that the impacts of the Pick-Sloan dams upon North Dakota have been predominately negative. It is hoped that further documentation of these impacts would support policy and management initiatives that would eventually be more favorable to North Dakota. The documents reviewed were encountered via database searches, reference lists from subsequently published documents, and through material available in the North Dakota State University Library governments document repository. 1. Directly Pertinent Studies on Changes in North Dakota A number of reports have been developed over the last 60 years on the impacts of the Pick-Sloan project on North Dakota. Most of these have been the result of commissioned research and most have been released as reports of the NDSU Department of Agricultural Economics (later Agribusiness and Applied Economics). A standard algorithm has been employed for analysis with some variation. This algorithm, with frequent deviation, includes: 1) definition of a representative farm, both with and without irrigation, with a variety of crops suitable for the particular irrigated or non-irrigated area; 2) estimation of returns to land and management, using NDSU extension crop budgets for the representative farms, sometimes with simulated price variation; and 3) regional analyses, using input-output analysis and appropriate multipliers for impacts upon local agribusiness and commerce.
    [Show full text]
  • Gavins Point Dam, South Dakota, to Ponca State Park, Nebraska
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Corps of Engineers U.S. Department of Defense 1986 Gavins Point Dam, South Dakota, to Ponca State Park, Nebraska Follow this and additional works at: https://digitalcommons.unl.edu/usarmyceomaha Part of the Civil and Environmental Engineering Commons "Gavins Point Dam, South Dakota, to Ponca State Park, Nebraska" (1986). US Army Corps of Engineers. 38. https://digitalcommons.unl.edu/usarmyceomaha/38 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Army Corps of Engineers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1It~ 1tatitNt4t ~ ~WM 1te~ 4Itd S(Jed 'DcWda ~1)e4~ 1It 1It'R'R-1 Gavins Point Dam, South Dakota, to Ponca State Park, Nebraska .. ~ ,-" c?0~ - OMAHA DISTRICT CORPS OF ENGINEERS DEPARTMENT OF THE ARMY JULY 1980 SUPPLEMENT NO.1, MARCH 1986 - MRDPD-ER (MROPD-A/17 Apr 86) 1st End Galloway/tw/7280 SUBJECT: Missouri National Recreational River, Supplement No. 1 to General Design Memorandum DA, Missouri River Division, Corps of Engineers, P.O. Box 103, Downtown Station, Omaha, Nebraska 68101-0103 Ar~ ~ 4 l,a5 TO: Commander, Omaha District, ATTN: MROPD-A Subject Supplement is approved. FOR THE COMMANDER: Encls wd YAL '=W. TUCKER= Colonel, Corps of Engineers Deputy Commander CF: DAEN-CWO-R, w/encls (5 cys) " 2 - MISSOURI ~~TIONhl RFCFE~TIONAL PIVFr C~VINS PC.H'T DAIf, SOUTB DAI\O'I'~ TO PO~CA STATE FARJ, NEPF~fFA GENEFAL DESIGN ~EMCR~~Dur ~RP-l SUPFLE¥E~T NC.
    [Show full text]
  • Shallow Water Fish Communities in the Missouri River Downstream of Fort Randall and Gavins Point Dams in 2003 and 2004 with Emphasis on Asian Carps
    Shallow water fish communities in the Missouri River downstream of Fort Randall and Gavins Point dams in 2003 and 2004 with emphasis on Asian carps Prepared for the Aquatic Nuisance Species Coordinator, U.S. Fish and Wildlife Service – Region 6, 134 Union Boulevard, Lakewood, Colorado 80228 By Robert A. Klumb – Fish Biologist U.S. Fish and Wildlife Service Great Plains Fish and Wildlife Management Assistance Office Pierre, South Dakota 57501 November 21, 2007 EXECUTIVE SUMMARY In 2003 and 2004, fish were collected during late-spring through summer with conical minnow traps (two mesh sizes), bag seines, and mini-fyke nets in shallow water habitats in the unchannelized Missouri River downstream of Fort Randall and Gavins Point dams in South Dakota and Nebraska. Presence of three Asian carp species, bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella, have been documented in the Missouri River downstream of Gavins Point Dam but have not been found upstream of this barrier. Whether Asian carps are reproducing in this reach of the Missouri River in South Dakota and Nebraska is also unknown. Adult silver carp were observed downstream of Gavins Point Dam in the mouth of the James River, South Dakota in 2003 and 2004, but no young-of- the-year (YOY) for all three Asian carp species were captured downstream of either dam. Lack of YOY captures potentially resulted from: 1) adult Asian carps migrating in summer to feed but, as of yet, are not reproducing in the South Dakota and Nebraska waters of the Missouri River downstream of Gavins Point Dam, 2) have only recently become established in this part of the Missouri River, 3) gears used in this study were deployed in habitats not inhabited by YOY Asian carps or 4) gears used were ineffective to capture this life stage.
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
    Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin.
    [Show full text]
  • Reservoir Sedimentation: the Economics of Sustainability
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2016-06-01 Reservoir Sedimentation: The Economics of Sustainability Matthew William George Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Civil and Environmental Engineering Commons BYU ScholarsArchive Citation George, Matthew William, "Reservoir Sedimentation: The Economics of Sustainability" (2016). Theses and Dissertations. 5955. https://scholarsarchive.byu.edu/etd/5955 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Reservoir Sedimentation: The Economics of Sustainability Matthew William George A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Rollin H. Hotchkiss, Chair E. James Nelson Gus Williams Department of Civil and Environmental Engineering Brigham Young University June 2016 Copyright © 2016 Matthew William George All Rights Reserved ABSTRACT Reservoir Sedimentation: The Economics of Sustainability Matthew William George Department of Civil and Environmental Engineering, BYU Master of Science Despite mounting demand for a more sustainable worldwide water supply system, available reservoir capacity is relentlessly diminishing due to sedimentation. This fact, coupled with a decrease in the rate of dam construction, indicate an impending water supply dilemma. In the future, dams should be designed following a life cycle management approach rather than the typical short-sighted design life technique. Neither sustainable reservoir lifespans nor intergenerational equity is achieved through conventional cost-benefit analyses (CBA), which render all benefits and costs projected to occur more than several decades into a project as negligible.
    [Show full text]
  • Estuarine and Coastal Sedimentation Problems1
    ESTUARINE AND COASTAL SEDIMENTATION PROBLEMS1 Leo C. van Rijn Delft Hydraulics and University of Utrecht, The Netherlands. E•mail: [email protected] Abstract: This Keynote Lecture addresses engineering sedimentation problems in estuarine and coastal environments and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. The three most basic design rules are: (1) try to understand the physical system based on available field data; perform new field measurements if the existing field data set is not sufficient (do not reduce on the budget for field measurements); (2) try to estimate the morphological effects of engineering works based on simple methods (rules of thumb, simplified models, analogy models, i.e. comparison with similar cases elsewhere); and (3) use detailed models for fine•tuning and determination of uncertainties (sensitivity study trying to find the most influencial parameters). Engineering works should be designed in a such way that side effects (sand trapping, sand starvation, downdrift erosion) are minimum. Furthermore, engineering works should be designed and constructed or built in harmony rather than in conflict with nature. This ‘building with nature’ approach requires a profound understanding of the sediment transport processes in morphological systems. Keywords: Sedimentation, sediment transport, morphological modelling 1. INTRODUCTION This lecture addresses sedimentation and erosion engineering problems in estuaries and coastal seas and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. Often, the sedimentation problem is a critical element in the economic feasibility of a project, particularly when each year relatively large quantities of sediment material have to be dredged and disposed at far•field locations.
    [Show full text]
  • Coastal and Shelf Sediment Transport: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Coastal and shelf sediment transport: an introduction MICHAEL B. COLLINS 1'3 & PETER S. BALSON 2 1School of Ocean & Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton S014 3ZH, UK (e-mail." mbc@noc, soton, ac. uk) 2Marine Research Division, AZTI Tecnalia, Herrera Kaia, Portu aldea z/g, Pasaia 20110, Gipuzkoa, Spain 3British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK. Interest in sediment dynamics is generated by the (a) no single method for the determination of need to understand and predict: (i) morphody- sediment transport pathways provides the namic and morphological changes, e.g. beach complete picture; erosion, shifts in navigation channels, changes (b) observational evidence needs to be gathered associated with resource development; (ii) the in a particular study area, in which contem- fate of contaminants in estuarine, coastal and porary and historical data, supported by shelf environment (sediments may act as sources broad-based measurements, is interpreted and sinks for toxic contaminants, depending by an experienced practitioner (Soulsby upon the surrounding physico-chemical condi- 1997); tions); (iii) interactions with biota; and (iv) of (c) the form and internal structure of sedimen- particular relevance to the present Volume, inter- tary sinks can reveal long-term trends in pretations of the stratigraphic record. Within this transport directions, rates and magnitude; context of the latter interest, coastal and shelf (d) complementary short-term measurements sediment may be regarded as a non-renewable and modelling are required, to (b) (above) -- resource; as such, their dynamics are of extreme any model of regional sediment transport importance.
    [Show full text]
  • Ecosystem Management of the Missouri River from Gavins Point Dam to Ponca State Park, Nebraska Robert S
    University of Nebraska at Omaha DigitalCommons@UNO Biology Faculty Publications Department of Biology 1980 Ecosystem Management of the Missouri River from Gavins Point Dam to Ponca State Park, Nebraska Robert S. Nebel University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub Part of the Civil and Environmental Engineering Commons Recommended Citation Nebel, Robert S., "Ecosystem Management of the Missouri River from Gavins Point Dam to Ponca State Park, Nebraska" (1980). Biology Faculty Publications. 35. https://digitalcommons.unomaha.edu/biofacpub/35 This Article is brought to you for free and open access by the Department of Biology at DigitalCommons@UNO. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. Missouri National Recreational River January, 2001 Background • Authorized by a 1978 amendment to the National Parks and Recreation Act (PL 95- 625) which amended the Wild and Scenic Rivers Act of 1968 (PL 90-542) • Corps is authorized to construct recreational development, bank stabilization, and other recreational river features as necessary to support the values for which the river was designated • Life-of-project funding ceiling of $21 million; approximately $3.2 million spent to date • The Corps and National Park Service signed a 1980 Cooperative Agreement outlining each agency's responsibilities • The General Management Plan has recently
    [Show full text]
  • Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No
    Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No. 1 What Is Soil Erosion? What Problems Happen On Construction Soil erosion is the detachment and movement of soil Sites? particles by water, wind, ice, or gravity. Safety and Nuisance Issues – Sediment on roadways and in the air can cause safety hazards. Flooding– Excessive sediment accumulation in drainage systems can create blockages that promote flooding. Sediment Build‐Up – Sediment that accumulates in streams, lakes, and bays can only be remediated by costly dredging. Increased Costs – Uncontrolled erosion and sedimentation requires costly maintenance and What Is Sedimentation? repair. It is cheaper and easier to PREVENT Sediment is the result of erosion. Sedimentation is erosion than to fix sedimentation problems. the build‐ up of eroded soil particles that are transported in runoff from their site of origin and Negative Public Perception ‐Observing muddy deposited in drainage systems, on other ground water flowing from construction sites negatively surfaces, or in bodies of water or wetlands. effects public perception. Why Should I Care? It’s the Law– Federal, State and local regulations require construction sites to be compliant with the Clean Water Act. Water Quality‐Erosion from construction projects can be a non‐point source pollutant that deteriorates the health of our lakes, streams and Narragansett Bay. Soil Loss ‐ Much of the total sediment loss that occurs each year is generated by highway construction and land development projects. Quality of Life‐ If you enjoy fishing, eating local Sediment‐filled runoff from a RIDOT construction site shellfish or swimming at one of Rhode Island’s beautiful beaches, this pollution can threaten your quality of life.
    [Show full text]
  • Sedimentary Rock Formation Models
    Sedimentary Rock Formation Models 5.7 A Explore the processes that led to the formation of sedimentary rock and fossil fuels. The Formation Process Explained • Formation of these rocks is one of the important parts of the rock cycle. For millions of years, the process of deposition and formation of these rocks has been operational in changing the geological structure of earth and enriching it. Let us now see how sedimentary rocks are formed. Weathering The formation process begins with weathering of existent rock exposed to the elements of nature. Wind and water are the chisels and hammers that carve and sculpt the face of the Earth through the process of weathering. The igneous and metamorphic rocks are subjected to constant weathering by wind and water. These two elements of nature wear out rocks over a period of millions of years creating sediments and soil from weathered rocks. Other than this, sedimentation material is generated from the remnants of dying organisms. Transport of Sediments and Deposition These sediments generated through weathering are transported by the wind, rivers, glaciers and seas (in suspended form) to other places in the course of flow. They are finally deposited, layer over layer by these elements in some other place. Gravity, topographical structure and fluid forces decide the resting place of these sediments. Many layers of mineral, organics and chemical deposits accumulate together for years. Layers of different deposits called bedding features are created from them. Crystal formation may also occur in these conditions. Lithification (Compaction and Cementation) Over a period of time, as more and more layers are deposited, the process of lithification begins.
    [Show full text]
  • Fort Peck Draft
    US Army Corps of Engineers Omaha District Draft Fort Peck Dam/Fort Peck Lake Project Montana Surplus Water Report Volume 1 Surplus Water Report Appendix A – Environmental Assessment August 2012 THIS PAGE INTENTIONALLY LEFT BLANK FORT PECK DAM/FORT PECK LAKE PROJECT, MONTANA SURPLUS WATER REPORT Omaha District U.S. Army Corps of Engineers August 2012 THIS PAGE INTENTIONALLY LEFT BLANK Fort Peck Dam / Fort Peck Lake, Montana FORT PECK DAM/FORT PECK LAKE MONTANA SURPLUS WATER REPORT August 2012 Prepared By: The U.S. Army Corps of Engineers, Omaha District Omaha, NE Abstract: The Omaha District is proposing to temporarily make available 6,932 acre-feet/year of surplus water (equivalent to 17,816 acre-feet of storage) from the system-wide irrigation storage available at the Fort Peck Dam/Fort Peck Lake Project, Montana to meet municipal and industrial (M&I) water supply needs. Under Section 6 of the Flood Control Act of 1944 (Public Law 78-534), the Secretary of the Army is authorized to make agreements with states, municipalities, private concerns, or individuals for surplus water that may be available at any reservoir under the control of the Department. Terms of the agreements are normally for five (5) years, with an option for a five (5) year extension, subject to recalculation of reimbursement after the initial five (5) year period. This proposed action will allow the Omaha District to enter into surplus water agreements with interested water purveyors and to issue easements for up to the total amount of surplus water to meet regional water needs.
    [Show full text]