Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 54(2): 371–380. 2020

New and noteworthy species of Chrysophyta for the Russian flora

T. V. Safronova, S. N. Shadrina

Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia Corresponding author: S. N. Shadrina, [email protected]

Abstract. The first electron-microscopic investigation of silica-scaled chrysophytes in water bodies of the protected area Kurgalsky Nature Reserve located in the North-West of European Rus- sia has resulted in the discovery of two species that are new for the Russian flora, Mallomonas favosa and M. teres. Mallomonas teres is reported for the frst time since its original descriptions. In addition, Paraphysomonas cf. ovalis and an unknown species of Mallomonas were observed. Descriptions, ori­ ginal photos, and habitat features of these four species are given. Keywords: electron-microscopic study, protected areas, Kurgalsky Nature Reserve, Leningrad Region.

Новые и интересные для флоры России виды золотистых водорослей (Chrysophyta)

Т. В. Сафронова, С. Н. Шадрина

Ботанический институт им. В. Л. Комарова РАН, Санкт-Петербург, Россия Автор для переписки: С. Н. Шадрина, [email protected]

Резюме. Первое электронно-микроскопическое исследование чешуйчатых золотистых водорослей в водоемах особо охраняемой природной территории Кургальского заказника на северо-западе европейской части России позволило обнаружить два новых для флоры России вида: Mallomonas favosa и M. teres. Mallomonas teres обнаружен впервые после его первоописа- ния. В статье приведены описания, оригинальные фотографии и особенности местообитаний четырех обнаруженных видов. Ключевые слова: электронно-микроскопическое исследование, ООПТ, Кургальский за- казник, Ленинградская область.

Peat bogs represent one of the significant vegetation types at higher latitudes of the Northern Hemisphere. During the last 20 years, chrysophycean were studied in wetlands of the Czech Republic, Hungary and Ukraine (Péterfi et al., 1998a, 1998b; Kalina et al., 2000; Neustupa et al., 2001; Němcová et al., 2001, 2002; Nováková et al., 2004; Němcová, 2010; Kapustin, 2014; Němcová, Kapustin, 2019). There are only a few Russian studies using EM (electron microscopy) on living in mires and other wetlands (Anisimova, Tanchenko, 2005; Safronova, 2011). It was noted that the scaled chrysophytes flora in these biotopes is diverse and abundant, especially in mesotrophic habitats. This study is a continuation of our previous studies of chryso- phytes by EM in protected areas of the North-West of Russia (Safronova, 2011; Saf­ ronova, Voloshko, 2013). https://doi.org/10.31111/nsnr/2020.54.2.371 371 Safronova, Shadrina. New and noteworthy species of Chrysophyta for the Russian flora

Material and Methods In the Leningrad Region, more than 50 protected areas cover about 600 000 ha. Over 20 wetlands in the region are declared as protected areas, where the most com- mon are oligotrophic sphagnum bogs (Krasnaya…, 1999). The Kurgalsky Nature Reserve is a state complex nature reserve established in 2000. It is located within the territory of the Kingisepp District of the Leningrad Re- gion. The territory of the reserve includes the mainland (Kurgalsky Peninsula) and some islands (islands and waters of the Gulf of Finland, the Narva Bay, and the Luzhs­ kaya Bay). The overall area of the reserve is about 60 000 ha, including the water area of the Gulf of Finland (38 400 ha) and the water area of lakes (848 ha). Altogether, 18 samples were examined as part of this study. Phytoplankton samples using a 20 μm mesh plankton net and water squeezed out from the plants Scirpus sp. and Utricula­ ria sp. were taken with synchronous measurements of рН, temperature and specifc conductivity (conductometer HM Digital COM-80 and pH-meter Hanna Combo HI 98129). The phytoplankton samples were immediately fixed with 2% formalde- hyde. The general morphology of the specimens under study were examined using a Studer R light-optical microscope. To study specimens with TEM, thirty microlitres оf each concentrated sample were air-dried on formvar coated grids. Three grids from each sample were analyzed using a Hitachi-H600 ТЕМ. The systematics of chrysophytes is based on the latest modern taxonomic data (Scoble, Cavalier-Smith, 2014; Kristiansen, Škaloud, 2016). The sampling sites in Kader Mire (Kurgalsky Nature Reserve), dates of sampling, and main physico-chemical parameters of the investigated stations are listed below. 1. Unnamed lake, water squeezed out from Scirpus sp. (59°31'04.6"N 28°07'59.6"E; 7 X 2019; pH 7.3; temperature 6.8 ˚C; conductivity 43 μS/cm) 2. Unnamed lake, water squeezed out from the Utricularia sp. (59°31'38.5"N 28°08'48.7"E; 8 X 2019; pH 6.7; temperature 7.4 ˚C; conductivity 38 μS/cm) 3. Unnamed lake, plankton (59°31'50.3"N 28°09'05.3"E; 9 X 2019; pH 6.2; tem- perature 8.9 ˚C; conductivity 27 μS/cm) Results Two species of silica-scaled chrysophytes, Mallomonas favosa and M. teres, are re- ported for the frst time for Russia. In addition, Paraphysomonas cf. ovalis and an un- known species of Mallomonas were observed.

CHRYSOPHYTA Pascher CHRYSOPHYCEAE Pascher Synurales Andersen Mallomonadaceae Deising Mallomonas favosa K. H. Nicholls (Plate I: 1–3) Cells and loose scales were found in localities 1 and 2. Body scales rhomboidal, 2.9– 3.7 × 2.0–2.6 μm. The shield consists of a reticulum of pentagonal meshes and papillae. 372 Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 54(2): 371–380. 2020

Body scales with pit at base of submarginal rib. Collar scales are asymmetric and pro- longed, measuring 3.2–3.3 × ­ ­1.4–1.8 μm, and with a small well-developed dome, that is 0.6–0.7 × 0.8–1.1 μm. Collar scales with 3–5 large pits in the posterior region of the scale. Rear scales are smaller, 1.7–2.0 × ­ ­1.3–1.4 μm, with extremely short spines 0.14 μm. Bristles are 7.1–8.0 μm, and taper to a thin and pointed apex. In the type material of this species, body scales have only one large circular or ir- regular shaped pit containing a pore in the angle of submarginal rib (Nicholls, 1984). In this study body scales not only with one pit but also with three closely arranged pits have been found. The body scales with additional pits have been observed also in Malagasy (Hansen, 1996) and Vietnam (Gusev, 2013). Ecology: The scales of M. favosa have been found in a wide range of conditions: pH varied from 4.6 (Němcová, 2010) to 7.5 (Němcová et al., 2012), conductivity from 58 µS сm-1 (Siver, Wujek, 1999) to 324 µS сm-1 (Němcová et al., 2012) and water tem- perature of water from 4.0 °C (Nemcova, 2010) to 34.5 °C (Wujek, Igoe, 1989). Distribution: A cosmopolitan species known from Europe, Asia, Africa, North and South America. The nearest European location to our sampling site is in Finland (Hällfors, Hällfors, 1988).

Mallomonas sp. (Plate I: 4–6) Mallomonas sp. was represented by a few apical and body scales observed in lo- cality 1. This species belongs to section Papillosae Asmund et Kristiansen. Body scales are tripartite, suboval, 4.4–5.0 × 2.4–2.8 μm, with a narrow dome and a patch of papillae. The anterior portion of the shield has scattered papillae, whereas the posterior portion is smooth with a large solitary pore. Apical scales ranged in size from 4.1–4.6 × 2.8–3.0 μm, are slightly asymmetrical with a broad dome, and the the anterior submarginal rib may extend into a short tooth. Shield with scattered papillae arranged irregularly or forming hexagonal structures. Mallomonas sp. is most similar to M. kalinae Řezáčová and M. rasilis Dürrschmidt. The scales of M. kalinae differ from those of M. rasilis in having well-developed ante- rior submarginal ribs (Řezáčová, 2006). The scales of Mallomonas sp. have a well-de- veloped anterior submarginal rib only on one side of the scale. In addition, the scales of M. kalinae have only smooth proximal borders whereas on Mallomonas sp. scales the proximal border has irregular struts. The scales of Mallomonas sp. larger than the scales of M. kalinae and M. rasilis, and differ from these latter two species by possessing a scattered ornamentation of papillae on the shield. Ecology: The scales of Mallomonas sp. was found in small peat-bog pool with pH 7.3, conductivity 43 μS/cm, and a water temperature about 7 ˚C (our data).

Mаllomonas teres Němcová et Kapustin (Plate II: 1–4) Loose body scales of this species were found in locality 1. Body scales are oblong oval, 3.9–4.7 × 2.3–2.8 µm, with a posterior rim encircling half of scale and a base plate with evenly spaced pores. The posterior flange is broad with struts, and the submargin-

373 Safronova, Shadrina. New and noteworthy species of Chrysophyta for the Russian flora

Plate I. Silica scales of Mallomonas favosa and Mallomonas sp. 1 — Mallomonas favosa, a scale case of the whole cell; 2 — Mallomonas favosa, rear spine-bearing scale; 3 — Mallomonas favosa, a body scale; 4 — Mallomonas sp., apical scales; 5, 6 — Mallomonas sp., body scales. Scale bars: 1 μm. al rib curves around the dome. A thick and rounded transverse rib connects with the submarginal rib forming a pocket-like structure in the distal part of the scale. Within this area, is the dome and 6 (8)–12 parallel curved ribs that can sometimes anastomose or interconnect by subtle lateral struts. The dome is broad and smooth or with ribs, continuous from the reticulation of the pocket-like structure. 374 Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 54(2): 371–380. 2020

Ecology: Mallomonas teres was found in small peat-bog pools with pH from 5.1 to 7.3, conductivity from 20 to 43 μS/cm, and a water temperature about 7 ˚C (Němcová, Kapustin, 2019; our data). Distribution: This species was revealed and described from two peat-bogs in Northern Sweden and a peat-bog pool in Northern Ukraine (Němcová, Kapustin, 2019). Our fnding is the frst since its original description. Differentiation: Like other members of the section Heterospinae Momeu et Pé- terf (1979), M. teres has oval to obovate scales without lateral incurvings, a contin- uous submarginal rib, and a prominent transverse rib that divides the area circum- scribed by continuous submarginal rib. Species of the section differ in the degree and type of secondary ornamentation on the shield and the prominence of the transverse rib. The species most similar to M. teres are M. pugio Bradley (1964), M. temonis Nem- cova et Kreidlova (2013), and M. harrisiae Takahashi (1975). Mallomonas teres is easi­ ly distinguished from the most closely resembling species by its pocket-like structure in the distal part of the scale. Scales of M. teres in our samples were similar to specimens collected from the mire localities in Sweden and Ukraine. Scales in our samples were slightly smaller than those reported in previous works (3.9–4.7 × 2.3–2.8 vs 4.9–5.1 × 2.7–3.2 μm). In the original description, the species also has a smooth dome. In this study scales not only with a smooth dome but also with a dome ornamented by ribs continuous with the reticulation of the pocket-like structure were observed. Other representatives of the genus Mаllomonas also show some variability in the scale size and character of their ornamentation (Siver, 1991).

Paraphysomonadales Caval.-Sm. Paraphysomonadaceae Preisig et Hibberd

Paraphysomonas cf. ovalis Scoble et Caval.-Sm. (Plate II: 5, 6). A single scale be- lieved to represent this species was found in locality 3. The scale has an oval base plate and a spine. The spine (length 1.84 μm, basal width 0.1 μm, apical width 0.02 μm) tapers gently to a rounded tip, slightly flared out at the base. The base plate is 0.64 × 1.2 μm and possesses a prominent, dense margin. Spine length/base width ratio is 1.5. Paraphysomonas ovalis is most similar to P. bandaiensis, P. truncata, and P. porosa in that all four species have a base plate with a thickened margin. It is distinct from the other three species in that the base-plate is oval to irregular and not regularly circular. In addition, the base plate is unperforated, unlike P. porosa (Scoble, Cavalier-Smith, 2014). The scale of Paraphysomonas cf. ovalis in our sample was similar to scales from the type strain. The observed differences were in the size of the base plate (0.64 × 1.2 μm vs ­0.47–0.56 × ­0.7–0.95 μm in the original description) and the apical width of the spine (0.20 μm vs. 0.26 μm). Ecology: The scale of Paraphysomonas cf. ovalis was found in small peat-bog pool with pH 6.2, conductivity 27 μS/cm, and a water temperature about 9 ˚C (our data).

375 Safronova, Shadrina. New and noteworthy species of Chrysophyta for the Russian flora

Plate II. Silica scales of Mallomonas teres and Paraphysomonas cf. ovalis. 1–4 — Mallomonas teres, body scales; 5 — Paraphysomonas cf. ovalis, a body scale; 6 — Paraphysomonas cf. ovalis, a rounded tip of spine. Scale bars: 1–5 — 1 μm; 6 — 0.25 μm.

Distribution: This species was described from the soils in England (Scoble, Ca­ valier-Smith, 2014). It is likely that scales found in Madagascar by Hansen (1996) and identifed as P. vestita are in fact P. ovalis according to the original description. Discussion This article presents one part of the results of research work devoted to the study of the biodiversity of chrysophytes of the Kader Mire. Scaled chrysophytes in the water bodies of the Kader Mire were studied for the frst time. Paraphysomonas ovalis earlier was described in one region. However, a wider dist­ ribution of this species can be assumed by analyzing photographs of scales of P. vestita

376 Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 54(2): 371–380. 2020 made by Hansen (1996). It is possible that in some places records of this species were listed as P. vestita. Mallomonas teres was previously found in two relatively distant regions of Europe: in Sweden and Ukraine (Němcová, Kapustin, 2019), which are situated more than 1400 km apart. Similarly, some rare species such as M. phasma Harris et Bradley and M. koreana Kim et Kim were originally considered endemic and later discovered in distant regions (Němcová, et al., 2012). Recent discovery of the “European endemic”, M. intermedia Kisselew in North America also fts this idea (Siver et al., 2019). New species, described in a limited area and not registered elsewhere, were initially consid- ered endemic. However, many of them were later found elsewhere (Kristiansen, 2005). Such microbial diversity distribution has resulted from the interaction of many variables including historical factors, dispersal limitation, efficient distribution mechanisms, environmental and chance factors. It is well known that the pH and conductivity of the water play signifcant roles in the distribution of silica-scaled chrysophytes (Kristiansen, 2005). If M. teres had restricted ecological tolerance, its ecological requirements would be restricted to the peat-bogs. At this moment all sites where M. teres has been found are ones with relatively low conductivity and low pH. However, due to the fact that three regions (Sweden, Russia, and Ukraine), where the species was found, are situated in a cold and humid continental climate according to the Köppen-Geiger classifcation (Peel et al., 2007), climatic factors may play a crucial role in the distribution of M. teres (Němcová, Kapustin, 2019). The location where we found M. teres is situated between Sweden and Ukraine and it may be found in similar habitats elsewhere along this latitudinal gradient. Thus, the obtained results of this work signifcantly supplement the information about the taxonomic diversity of chrysophytes in the Leningrad Region. Acknowledgments The work was carried within the framework of the research contract no. R19-5180 dated 16.06.2019 between Nord stream 2 AG and Komarov Botanical Institute of the Russian Academy of Sciences as part of a programm “Regional taxonomic and floristic studies of algae of marine and continental waterbodies” АААА-А18-118030790036-0. TEM micrographs were created on the equipment of the Core Facilities Center “Cell and Molecular Technologies in Plant Science” at the Komarov Botanical Institute RAS (St. Petersburg, Russia). Authors thank to Dr. P. Siver (USA) for his kind help to improve English of the manuscript and for many helpful comments. Authors gratefully acknowledge Dr. Magda Škaloudová, Dr. Yvonne Němcová and Dr. Dmitry Kapustin for help with species identifcation. References Anisimova O. V., Tanchenko E. M. 2005. K flore Chrysophyceae Zvenigorodskoi biologicheskoi stantsii [To the Chrysophyceae flora of the Zvenigorod biological station]. Trudy Zvenigorodskoi biolo­ gicheskoi stantsii 4: 136–142. (In Russ.). Gusev E. S. 2013. Studies on synurophycean algae from mangrove wetlands (Vietnam). Nova Hed­ wigia, Beiheft 142: 87–95.

377 Safronova, Shadrina. New and noteworthy species of Chrysophyta for the Russian flora

Hällfors G., Hällfors S. 1988. Records of chrysophytes with siliceous scales (Mallomonadaceae and Paraphysomonadaceae) from Finnish inland waters. Hydrobiologia 161: 1–29. https://doi.org/10.1007/BF00044096 Hansen P. 1996. Silica-scaled Chrysophyceae and Synurophyceae from Madagascar. Archiv Für Pro­ tistenkunde 147(2): 145–172. https://doi.org/10.1016/S0003-9365(96)80030-3 Kalina T., Němcová Y, Neustupa J. 2000. Silica-scaled chrysophytes of the Czech Republic 1. District Ceská Lípa (Northern Bohemia) and part of the Central Bohemia. Algological studies/Archiv für Hydrobiologie, Supplement Volumes 96: 29–47. https://doi.org/10.1127/algol_stud/96/2000/29 Kapustin D. A. 2014. Freshwater algae of the Polessian Nature Reserve (Ukraine). International Journal on Algae 16: 43–56. https://doi.org/10.1615/InterJAlgae.v16.i1.30 Krasnaya kniga Leningradskoy oblasti. T. 1. [Red Data Book of the Leningrad Region. Vol. 1. Special- ly protected natural territories]. 1999. St. Petersburg: 352 p. (In Russ.). Kristiansen J. 2005. Golden algae: a biology of chrysophytes. Koenigstein: 167 p. Němcová Y. 2010. Diversity and ecology of silica-scaled chrysophytes (Synurophyceae, Chrysophy- ceae) in the National Nature Monument Swamp and Břehyňský Pond, Czech Republic. Crypto­ gamie Algologie 31(2): 229–243. Němcová Y., Kalina T., Neustupa J., Nováková S. 2001. Silica-scaled chrysophytes of the Krkonoše Mountains (Czech Republic). Archiv für Hydrobiologie 137(101): 97–108. https://doi.org/10.1127/algol_stud/101/2001/97 Nemcova Y., Kapustin D. 2019. Mallomonas teres, sp. nov. (Chrysophyceae), simultaneously revealed in two distant European peat-bog regions. Cryptogamie Algologie 40(4): 35–39. https://doi.org/10.5252/cryptogamie-algologie2019v40a4 Němcová Y., Kreidlová J., Kosová A., Neustupa J. 2012. Lakes and pools of Aquitaine region (France) — a biodiversity hotspot of Synurales in Europe. Nova Hedwigia 95(1–2): 1–24. https://doi.org/10.1127/0029-5035/2012/0036 Němcová Y., Neustupa J., Nováková S., Kalina T. 2002. Silica-scaled chrysophytes of the Šumava National Park and the Třeboňsko UNESCO Biosphere Reserve (Southern Bohemia, Czech Re- public). Nordic Journal of Botany 22(3): 375–383. https://doi.org/10.1111/j.1756-1051.2002.tb01387.x Němcová Y., Pusztai M., Škaloudová M., Neustupa J. 2016. Silica-scaled chrysophytes (Strameno- piles, ) along a salinity gradient: a case study from the Gulf of Bothnia western shore (northern Europe). Hydrobiologia 764: 187–197. https://doi.org/10.1007/s10750-015-2424-9 Neustupa J., Nemcova Y., Kalina T. 2001. Silica-scaled Chrysophytes of Southern Bohemia and Ces- komoravska vrchovina (Czech-Moravian Highlands, Czech Republic). Algological Studies 102: 23–34. https://doi.org/10.1127/algol_stud/102/2001/23 Nicholls K. H. 1984. Four new Mallomonas species of the Torquatae series. Canadian Journal of Bot­ any 62(8): 1583–1591. https://doi.org/10.1139/b84-213 Nováková S., Němcová Y., Neustupa J., Řezáčová M., Šejnohová L., Kalina T. 2004. Silica-scaled chrysophytes in acid peat bogs of Bohemian Switzerland (Czech Republic) and Saxonian Swit- zerland (Germany). Nova Hedwigia 78(3–4): 507–515. https://doi.org/10.1127/0029-5035/2004/0078-0507 Peel M. C., Finlayson B. L., McMahon T. A. 2007. Updated world map of the Köppen-Geiger climate classifcation. Hydrology and Earth System Sciences 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 Péterf L. S.; Momeu L.; Padisák J., Varga V. 1998a. Silica-scaled chrysophytes from permanent and temporary waters of Hortobágy, eastern Hungary. Hydrobiologia 369: 339–351. https://doi.org/10.1023/A:1017093725502 Péterf L. S., Padisák J., Momeu L., Borics G. 1998b. Silica-scaled chrysophytes from the bog-lake Baláta-tó, SW Hungary. Nordic Journal of Botany 18(6): 727–733.

378 Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 54(2): 371–380. 2020

https://doi.org/10.1111/j.1756-1051.1998.tb01555.x Řezáčová M. 2006. Mallomonas kalinae (Synurophyceae), a new species of alga from northern Bohe- mia, Czech Republic. Preslia 78: 353–358. Safronova T. V. 2011. Species composition of Chrysophyta in the waterbodies of the wetland of inter- national importance “Mshinskaya bog system” (Leningrad Region) Botanicheskii zhurnal 96(8): 1037–1052. (In Russ. with Engl. abstract). Safronova T. V., Voloshko L. N. 2013. Silica-scaled chrysophytes in the waterbodies of protected areas of the North-West of Russia. Nova Hedwigia, Beiheft 142: 97–115. Scoble J. M., Cavalier-Smith T. 2014. Scale evolution in Paraphysomonadida (Chrysophyceae): Se- quence phylogeny and revised of Paraphysomonas, new genus Clathromonas, and 25 new species. European Journal of Protistology 50(5): 551–592. https://doi.org/10.1016/j.ejop.2014.08.001 Siver P. 1991. The Biology of Mallomonas: Morphology, Taxonomy and Ecology. Dordrecht: 230 p. https://doi.org/10.1007/978-94-011-3376-0 Siver P. A., Wujek D. E. 1999. Scaled Chrysophyceae and Synurophyceae from Florida, U.S.A.: VI. Observations on the flora from waterbodies in the Ocala National Forest.Nova Hedwigia ­68(1–2): 75–92. https://doi.org/10.1127/nova.hedwigia/68/1999/75 Siver P. A., Skogstad A., Nemcova Y. 2019. Endemism, palaeoendemism and migration: the case for the ‘European endemic’, Mallomonas intermedia. European Journal of Phycology 54(2): 222–234. https://doi.org/10.1080/09670262.2018.1544377 Wujek D. E., Igoe M. J. 1989. Studies on Michigan Chrysophyceae. VII. Nova Hedwigia, Beiheft 95: 269–280.

Литература [Anisimova, Tanchenko] Анисимова О. В., Танченко Е. М. 2005. К флоре Chrysophyceae Звениго- родской биологической станции. Труды Звенигородской биологической станции. 4: 136–142. Gusev E. S. 2013. Studies on synurophycean algae from mangrove wetlands (Vietnam). Nova Hed­ wigia, Beiheft 142: 87–95. Hällfors G., Hällfors S. 1988. Records of chrysophytes with siliceous scales (Mallomonadaceae and Paraphysomonadaceae) from Finnish inland waters. Hydrobiologia 161: 1–29. https://doi.org/10.1007/BF00044096 Hansen P. 1996. Silica-scaled Chrysophyceae and Synurophyceae from Madagascar. Archiv Für Pro­ tistenkunde 147(2): 145–172. https://doi.org/10.1016/S0003-9365(96)80030-3 Kalina T., Němcová Y, Neustupa J. 2000. Silica-scaled chrysophytes of the Czech Republic 1. District Ceská Lípa (Northern Bohemia) and part of the Central Bohemia. Algological studies/Archiv für Hydrobiologie, Supplement Volumes 96: 29–47. https://doi.org/10.1127/algol_stud/96/2000/29 Kapustin D. A. 2014. Freshwater algae of the Polessian Nature Reserve (Ukraine). International Journal on Algae 16: 43–56. https://doi.org/10.1615/InterJAlgae.v16.i1.30 [Krasnaya…] Красная книга Ленинградской области. Т. 1. 1999. СПб.: 352 с. Kristiansen J. 2005. Golden algae: a biology of chrysophytes. Koenigstein: 167 p. Němcová Y. 2010. Diversity and ecology of silica-scaled chrysophytes (Synurophyceae, Chrysophy- ceae) in the National Nature Monument Swamp and Břehyň ský Pond, Czech Republic. Crypto­ gamie Algologie 31(2): 229–243. Němcová Y., Kalina T., Neustupa J., Nováková S. 2001. Silica-scaled chrysophytes of the Krkonoše Mountains (Czech Republic). Archiv für Hydrobiologie 137(101): 97–108. https://doi.org/10.1127/algol_stud/101/2001/97 Nemcova Y., Kapustin D. 2019. Mallomonas teres, sp. nov. (Chrysophyceae), simultaneously revealed in two distant European peat-bog regions. Cryptogamie Algologie 40(4): 35–39. https://doi.org/10.5252/cryptogamie-algologie2019v40a4

379 Safronova, Shadrina. New and noteworthy species of Chrysophyta for the Russian flora

Němcová Y., Kreidlová J., Kosová A., Neustupa J. 2012. Lakes and pools of Aquitaine region (France) — a biodiversity hotspot of Synurales in Europe. Nova Hedwigia 95(1–2): 1–24. https://doi.org/10.1127/0029-5035/2012/0036 Němcová Y., Neustupa J., Nováková S., Kalina T. 2002. Silica-scaled chrysophytes of the Šumava National Park and the Třeboňsko UNESCO Biosphere Reserve (Southern Bohemia, Czech Re- public). Nordic Journal of Botany 22(3): 375–383. https://doi.org/10.1111/j.1756-1051.2002.tb01387.x Nemcova Y., Pusztai M., Škaloudova M., Neustupa J. 2016. Silica-scaled chrysophytes (Strameno- piles, Ochrophyta) along a salinity gradient: a case study from the Gulf of Bothnia western shore (northern Europe). Hydrobiologia 764: 187–197. https://doi.org/10.1007/s10750-015-2424-9 Neustupa J., Nemcova Y., Kalina T. 2001. Silica-scaled Chrysophytes of Southern Bohemia and Ces- komoravska vrchovina (Czech-Moravian Highlands, Czech Republic). Algological Studies 102: 23–34. https://doi.org/10.1127/algol_stud/102/2001/23 Nicholls K. H. 1984. Four new Mallomonas species of the Torquatae series. Canadian Journal of Bo­ tany 62(8): 1583–1591. https://doi.org/10.1139/b84-213 Nováková S., Němcová Y., Neustupa J., Řezáčová M., Šejnohová L., Kalina T. 2004. Silica-scaled chrysophytes in acid peat bogs of Bohemian Switzerland (Czech Republic) and Saxonian Swit- zerland (Germany). Nova Hedwigia 78(3–4): 507–515. https://doi.org/10.1127/0029-5035/2004/0078-0507 Peel M. C., Finlayson B. L., McMahon T. A. 2007. Updated world map of the Köppen-Geiger climate classifcation. Hydrology and Earth System Sciences 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 Péterf L. S.; Momeu L.; Padisák J., Varga V. 1998a. Silica-scaled chrysophytes from permanent and temporary waters of Hortobágy, eastern Hungary. Hydrobiologia 369: 339–351. https://doi.org/10.1023/A:1017093725502 Péterf L. S., Padisák J., Momeu L., Borics G. 1998b. Silica-scaled chrysophytes from the bog-lake Baláta-tó, SW Hungary. Nordic Journal of Botany 18(6): 727–733. https://doi.org/10.1111/j.1756-1051.1998.tb01555.x Řezáčová M. 2006. Mallomonas kalinae (Synurophyceae), a new species of alga from northern Bohe- mia, Czech Republic. Preslia 78: 353–358. [Safronova] Сафронова Т. В. 2011. Видовой состав Chrysophyta в водоемах водно-болотного угодья международного значения «Мшинская болотная система» (Ленинградская область). Ботанический журнал 96(8): 1037–1052. Safronova T. V., Voloshko L. N. 2013. Silica-scaled chrysophytes in the waterbodies of protected areas of the North-West of Russia. Nova Hedwigia, Beiheft 142: 97–115. Scoble J. M., Cavalier-Smith T. 2014. Scale evolution in Paraphysomonadida (Chrysophyceae): Se- quence phylogeny and revised taxonomy of Paraphysomonas, new genus Clathromonas, and 25 new species. European Journal of Protistology 50(5): 551–592. https://doi.org/10.1016/j.ejop.2014.08.001 Siver P. 1991. The Biology of Mallomonas: Morphology, Taxonomy and Ecology. Dordrecht: 230 p. https://doi.org/10.1007/978-94-011-3376-0 Siver P. A., Wujek D. E. 1999. Scaled Chrysophyceae and Synurophyceae from Florida, U.S.A.: VI. Observations on the flora from waterbodies in the Ocala National Forest.Nova Hedwigia ­68(1–2): 75–92. https://doi.org/10.1127/nova.hedwigia/68/1999/75 Siver P. A., Skogstad A., Nemcova Y. 2019. Endemism, palaeoendemism and migration: the case for the ‘European endemic’, Mallomonas intermedia. European Journal of Phycology 54(2): 222–234. https://doi.org/10.1080/09670262.2018.1544377 Wujek D. E., Igoe M. J. 1989. Studies on Michigan Chrysophyceae. VII. Nova Hedwigia, Beiheft 95: 269–280.

380