Clinical Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Msin3a Corepressor Regulates Diverse Transcriptional Networks Governing Normal and Neoplastic Growth and Survival
mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival Jan-Hermen Dannenberg,1,4 Gregory David,1,3,4 Sheng Zhong,2 Jaco van der Torre,1 Wing H. Wong,2 and Ronald A. DePinho1,5 1Department of Medical Oncology, Dana Farber Cancer Institute; Departments of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; 2Department of Statistics, Stanford University, Stanford, California 94305, USA mSin3A is a core component of a large multiprotein corepressor complex with associated histone deacetylase (HDAC) enzymatic activity. Physical interactions of mSin3A with many sequence-specific transcription factors has linked the mSin3A corepressor complex to the regulation of diverse signaling pathways and associated biological processes. To dissect the complex nature of mSin3A’s actions, we monitored the impact of conditional mSin3A deletion on the developmental, cell biological, and transcriptional levels. mSin3A was shown to play an essential role in early embryonic development and in the proliferation and survival of primary, immortalized, and transformed cells. Genetic and biochemical analyses established a role for mSin3A/HDAC in p53 deacetylation and activation, although genetic deletion of p53 was not sufficient to attenuate the mSin3A null cell lethal phenotype. Consistent with mSin3A’s broad biological activities beyond regulation of the p53 pathway, time-course gene expression profiling following mSin3A deletion revealed deregulation of genes involved in cell cycle regulation, DNA replication, DNA repair, apoptosis, chromatin modifications, and mitochondrial metabolism. Computational analysis of the mSin3A transcriptome using a knowledge-based database revealed several nodal points through which mSin3A influences gene expression, including the Myc-Mad, E2F, and p53 transcriptional networks. -
Gene Networks Activated by Specific Patterns of Action Potentials in Dorsal Root Ganglia Neurons Received: 10 August 2016 Philip R
www.nature.com/scientificreports OPEN Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons Received: 10 August 2016 Philip R. Lee1,*, Jonathan E. Cohen1,*, Dumitru A. Iacobas2,3, Sanda Iacobas2 & Accepted: 23 January 2017 R. Douglas Fields1 Published: 03 March 2017 Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. Adaptation in the nervous system in response to external stimuli requires synthesis of new gene products in order to elicit long lasting changes in processes such as development, response to injury, learning, and memory1. Information in the environment is coded in the pattern of action-potential firing, therefore gene transcription must be regulated by the pattern of neuronal firing. -
ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Claire Guérillon, Delphine Larrieu, Rémy Pedeux
ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Claire Guérillon, Delphine Larrieu, Rémy Pedeux To cite this version: Claire Guérillon, Delphine Larrieu, Rémy Pedeux. ING1 and ING2: Multi-Faceted Tumor Sup- pressor Genes. Cellular and Molecular Life Sciences, Springer Verlag, 2013, 70 (20), pp.3753-3772. 10.1007/s00018-013-1270-z. hal-00867345 HAL Id: hal-00867345 https://hal-univ-rennes1.archives-ouvertes.fr/hal-00867345 Submitted on 28 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Guérillon et al., 2013 ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Claire Guérillon1, 2, Delphine Larrieu4, and Rémy Pedeux1, 2, 3, * 1INSERM U917, Microenvironnement et Cancer, Rennes, France, 2Université de Rennes 1, Rennes, France, 3Etablissement Français du Sang, Rennes, France, 4The Welcome Trust and Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. *Corresponding author: Rémy Pedeux INSERM U917, Faculté de Médecine de Rennes Building 2, Room 117, 2 avenue du Professeur Léon Bernard 35043 Rennes France Tel: 33 (0)2 23 23 47 02 Fax: 33 (0)2 23 23 49 58 Email: [email protected] Short Title: ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Keywords: ING1, ING2, tumor suppressor gene, p53, H3K4Me3 1 Guérillon et al., 2013 Abstract ING1 (Inhibitor of Growth 1) was identified and characterized as a “candidate” tumor suppressor gene in 1996. -
Insulin Resistance Intrudes AKT2's Protective Effects Against Neural
Issue 1, 2014 | 2014 High School GIDAS Research Conference | Poster abstracts Issue 1, 2014 | 2014 High School GIDAS Research Conference | Poster abstracts Insulin Resistance Intrudes AKT2’s Protective Effects Against Neural Keywords: ATK, FOXO1, phosphorylation, insulin resistance, apoptosis, Alzheimer’s disease Apoptosis References: 1. http://www.alz.org/alzheimers_disease_facts_and_figures.asp Cassidy Durkee 2. http://www.genecards.org/cgi-bin/carddisp.pl?gene=SH3RF1 3. http://www.sciencedirect.com/science/article/pii/S0092867407007751 12th grade, Community high school, Ann Arbor, MI, USA 4. http://www.ncbi.nlm.nih.gov/pubmed/9620559 5. http://www.ncbi.nlm.nih.gov/pubmed/21303257 Introduction 6. http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4136 Alzheimer’s disease is the sixth leading cause of death in the United States, accountable for an 7. http://www-06.all-portland.net/bst/032/0350/0320350.pdf estimated 500,000 deaths in 2010 [1]. While it seems to affect individuals quite arbitrarily, there has been some question in the past about the role of diet in its development. In this abstract, we will look at the role of insulin resistance in neural apoptosis as noted in Alzheimer’s disease. The primary gene of focus will be AKT2, a kinase responsible for phosphorylating several important proteins, but most relevantly FOXO1 as it contributes to neural apoptosis [2]. Identifying kinase- substrate interactions and phosphorylation can yield uncertain results, but this relationship was previously confirmed using PDK1-PHKI embryonic stem cells [3]. AKT2 is activated by insulin I am a recent graduate from Community high [4], and it has been found that AKT2 plays a crucial role in preventing oxidative-stress-induced school in Ann Arbor, MI, and will be attending the apoptosis [5]. -
Multi-Omic Meta-Analysis of Transcriptomes and the Bibliome Uncovers Novel Hypoxia-Inducible Genes
biomedicines Article Multi-Omic Meta-Analysis of Transcriptomes and the Bibliome Uncovers Novel Hypoxia-Inducible Genes Yoko Ono and Hidemasa Bono * Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-82-424-4013 Abstract: Hypoxia is a condition in which cells, tissues, or organisms are deprived of sufficient oxygen supply. Aerobic organisms have a hypoxic response system, represented by hypoxia-inducible factor 1-α (HIF1A), to adapt to this condition. Due to publication bias, there has been little focus on genes other than well-known signature hypoxia-inducible genes. Therefore, in this study, we performed a meta-analysis to identify novel hypoxia-inducible genes. We searched publicly available transcriptome databases to obtain hypoxia-related experimental data, retrieved the metadata, and manually curated it. We selected the genes that are differentially expressed by hypoxic stimulation, and evaluated their relevance in hypoxia by performing enrichment analyses. Next, we performed a bibliometric analysis using gene2pubmed data to examine genes that have not been well studied in relation to hypoxia. Gene2pubmed data provides information about the relationship between genes and publications. We calculated and evaluated the number of reports and similarity coefficients of each gene to HIF1A, which is a representative gene in hypoxia studies. In this data-driven study, we report that several genes that were not known to be associated with hypoxia, including the G protein-coupled receptor 146 gene, are upregulated by hypoxic stimulation. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase. -
SAP30 Polyclonal Antibody - Classic
SAP30 polyclonal antibody - Classic Cat. No. C15410036 Specificity: Human: positive Type: Polyclonal ChIP-grade/ChIP-seq grade Other species: not tested Source: Rabbit Purity: Protein G purified polyclonal antibody in PBS containing 0.05% azide and 0.05% ProClin 300. Lot #: 001 Storage: Store at -20°C; for long storage, store at -80°C. Size: 50 µl/25 µl Avoid multiple freeze-thaw cycles. Concentration: 2.0 µg/µl Precautions: This product is for research use only. Not for use in diagnostic or therapeutic procedures. Description: Polyclonal antibody raised in rabbit against human SAP30 (Sin3-associated polypeptide, 30kDa), using the full length His-tagged protein. Applications Suggested dilution References ChIP* 2 - 5 µg/ChIP Fig 1, 2 Western blotting 1:1,000 Fig 3 *Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 1-5 µg per IP. Target description SAP30 (UniProtKB/Swiss-Prot entry O75446) is a component of the histone deacetylase complex, which also includes SIN3, SAP18, HDAC1, HDAC2, RbAp46, RbAp48. Histone acetylation and deacetylation play a key role in the regulation of eukaryotic gene expression. This complex only deacetylates core histone octamers, and is not able to deacetylate nucleosomal histones. Results Figure 1. ChIP results obtained with the Diagenode antibody directed against SAP30 ChIP assays were performed using HeLa cells, the Diagenode antibody against SAP30 (Cat. No. C15410036) and optimized primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (cat. No. C01010055), using sheared chromatin from 4 million cells. A titration of the antibody consisting of 1, 2 and 5 µg per ChIP experiment was analysed. -
2020.11.07.372946V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.07.372946; this version posted November 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functional characterization of RebL1 highlights the evolutionary conservation of oncogenic activities of the RBBP4/7 orthologue in Tetrahymena thermophila Syed Nabeel-Shah1,9, Jyoti Garg2,8, Alejandro Saettone1,8, Kanwal Ashraf 2, Hyunmin Lee3,4, Suzanne Wahab1, Nujhat Ahmed4,5, Jacob Fine2, Joanna Derynck1, Marcelo Ponce6, Shuye Pu4, Edyta Marcon4, Zhaolei Zhang3,4,5, Jack F Greenblatt4,5, Ronald E Pearlman2, Jean-Philippe Lambert7,* and Jeffrey Fillingham1, * 1. Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada. 2. Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada. 3. Department of Computer Sciences, University of Toronto, Toronto, M5S 1A8, Canada. 4. Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada. 5. Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada. 6. SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto, ON M5G 1M1, Canada. 7. Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec, G1V 4G2, Canada. 8. These authors contributed equally to this work 9. Present address: Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada. Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada. -
WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US). -
Characterising Private and Shared Signatures of Positive Selection in 37 Asian Populations
European Journal of Human Genetics (2017) 25, 499–508 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Characterising private and shared signatures of positive selection in 37 Asian populations Xuanyao Liu1,2, Dongsheng Lu3, Woei-Yuh Saw2,4, Philip J Shaw5, Pongsakorn Wangkumhang5, Chumpol Ngamphiw5, Suthat Fucharoen6, Worachart Lert-itthiporn7,8, Kwanrutai Chin-inmanu8, Tran Nguyen Bich Chau9, Katie Anders9,10, Anuradhani Kasturiratne11, H Janaka de Silva12, Tomohiro Katsuya13, Ryosuke Kimura14, Toru Nabika15, Takayoshi Ohkubo16, Yasuharu Tabara17, Fumihiko Takeuchi18, Ken Yamamoto19, Mitsuhiro Yokota20, Dolikun Mamatyusupu21, Wenjun Yang22, Yeun-Jun Chung23, Li Jin24, Boon-Peng Hoh25, Ananda R Wickremasinghe11, RickTwee-Hee Ong2, Chiea-Chuen Khor26, Sarah J Dunstan9,10,27, Cameron Simmons9,10,28, Sissades Tongsima5, Prapat Suriyaphol8,29, Norihiro Kato18, Shuhua Xu3,30,31 and Yik-Ying Teo*,1,2,4,18,26,32 The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined.