1 Phytochemical and Biological Evaluation of Two Vietnamese

Total Page:16

File Type:pdf, Size:1020Kb

1 Phytochemical and Biological Evaluation of Two Vietnamese Phytochemical and Biological Evaluation of Two Vietnamese Plants, Indigofera spicata and Millettia caerulea Dissertation 1 Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Lynette Bueno Pérez Graduate Program in Pharmacy The Ohio State University 2014 Dissertation Committee: A. Douglas Kinghorn, Advisor David M. Lucas Robert W. Brueggemeier 2 Copyright by Lynette Bueno Pérez 2014 Abstract Cancer continues to be a leading cause of death in the United States. Natural products obtained from plants have been the source of many approved anticancer drugs. This dissertation study is part of a multi-institutional collaborative program project entitled “Discovery of Anticancer Agents of Diverse Natural Origin”. The overall aim of ii this project is the discovery of new natural product anticancer lead compounds from aquatic cyanobacteria, filamentous fungi, and tropical plants. The work presented herein focuses on the discovery of new anticancer lead agents from tropical plants. Two tropical plants of the family Fabaceae (Indigofera spicata and Millettia caerulea), collected in Vietnam, were investigated as possible sources of anticancer lead compounds. Cytotoxicity-guided isolation of the chloroform extract of the combined flowers, fruits, leaves, and twigs of I. spicata resulted in the purification of four new flavanones (67, 71, 74, and 76) and six known compounds inclusive of three rotenoids (68, 70, and 73), two flavanones (69 and 72), and a chalcone (75), in addition to a semi-synthetic chalcone (77). Three cytotoxic compounds (68, 70, and 73) were identified with 50% inhibitory concentration (IC50) values of less than 10 µM. cis-(6aβ,12aβ)- Hydroxyrotenone (68) and rotenone (70) showed submicromolar activities against HT-29 and 697 cells. Compounds 68 and 70 were non-toxic to normal colon cells. Compound 68 was investigated in an in vivo hollow fiber assay. Nine (68, 70-77) out of ten compounds ii evaluated in a quinone reductase induction assay were active, each with a concentration required to double (CD) quinone reductase activity value of less than 10 µM. The new compound, (+)-5-methoxypurpurin (74), was identified as a possible lead agent for cancer chemoprevention, with a CD value of 0.2 µM and no cytoxicity to the host cells. Cytotoxicity-guided isolation of the chloroform extract of the fruits of M. caerulea resulted in the purification of one novel (143), two new (144-145), and eleven known rotenoids (68, 70, 73, 131-132, 135, 140-141, 146-148). The novel rotenoid, caeruleanone A (143), was found to contain an unprecedented arrangement of iii the D-ring and its structure was confirmed by single-crystal X-ray crystallographic analysis. As with I. spicata, cis-(6aβ,12aβ)-hydroxyrotenone (68) and rotenone (70) were isolated as the major cytotoxic components of the chloroform extract. The new compound, caeruleanone C (145), exhibited potent mitochondrial transmembrane potential (MTP) inhibition with an IC50 value of 0.07 µM, whereas deguelin (131) was active with an IC50 value of 3.3 µM. Also, tephrosin (73), showed nuclear factor kappa B (p65) inhibition with an IC50 value of 4.9 µM. Furthermore, seven (68, 70, 73, 141, 144- 145, and 148) out of thirteen compounds evaluated for quinone reductase induction activity displayed CD values of less than 10 µM. The new compounds, caeruleanone B (144) and C (145), showed potent activity with CD values of 0.9 and 1.0 µM, respectively, and exhibited no apparent cytoxicity to the host cells. In sum, investigation of I. spicata and M. caerulea collected in Vietnam, provided novel, new and active lead compounds for possible development to combat cancer. iii iv Dedication In honor and to the loving memory of my father, Cecilio Bueno Pintado (1945-2012). To my late grandmother, Paulita, who led a brave fight against thyroid cancer. iv Acknowledgments First of all, I want to express my most heartfelt and sincere gratitude to my advisor, Prof. A. Douglas Kinghorn for welcoming me in his laboratory, for his guidance, mentoring, encouragement and support in every step of my Ph.D. degree. Prof. Kinghorn was truly an exceptional advisor, and I will treasure in my continuing professional career v development his teachings in proper scientific writing and research excellence. Second, I want to express my deepest gratitude to Prof. David M. Lucas, who served as my co- advisor, provided very useful mentorship in biology research and allowed me to perform some biology experimental work in his laboratory, in addition to supplying constant support and encouragement. I also want to thank the members in Prof. Lucas laboratory, especially Dr. Sneha Gupta, Ms. Ellen Sass, Ms. Carolyn Cheney, and Mr. Ryan B. Edwards for training in cell culture techniques, the use of flow cytometry, and the MTT cytotoxicity, rhodamine and PI assays. Third, I want to express my profound gratitude to Prof. Robert W. Brueggemeier for being part of my dissertation committee, and to Profs. Karl A. Werbovetz and Tom Li, as members of my candidacy committee. I want to express my deepest thanks to Dr. Judith C. Gallucci of the Department of Chemistry and Biochemistry (OSU) for the X-ray diffraction analysis and to Prof. Steven M. Swanson and Mr. Daniel D. Lantvit at the Department of Medicinal Chemistry and Pharmacognosy (UIC) for the in vivo hollow fiber assay evaluation. Many thanks are v expressed to Dr. Chunhua Yuan for the 800 MHz NMR analysis. My most sincere thanks to Mr. Mark Apsega at the Mass Spectrometry & Proteomics Facility in the Biological Research Tower (OSU) for training in HRMS instrumental analysis. I also want to thank Prof. Esperanza Carcache de Blanco and Dr. Ulyana Muñoz Acuña for MTP and NF-κB testing, and to Dr. Hee-Byung Chai for HT-29 cytotoxicity evaluation. In addition, I thank Dr. Chai for teaching me some cell culture techniques and the SRB cytotoxicity assay. I thank also Dr. Jie Li for training and help with the quinone reductase induction assay. Special thanks go to Dr. Li Pan, from whom I learned most of what I now know vi about isolation, structure elucidation, use of the NMR instrumentations, and other analytical instrumentation used in this research, and for providing me with the essential skills and knowledge necessary to be self-sufficient and successful in phytochemical research. I wish to express my most profound gratitude to Prof. Djaja D. Soejarto at the Department of Medicinal Chemistry and Pharmacognosy (UIC) and Prof. Tran Ngoc Ninh at the Institute of Ecology and Biological Resources, Vietnamese Academy of Science and Technology (Vietnam) for the plant collections and taxonomic identifications. I also thank Prof. Soejarto for providing very nice photographs of the plants under study and for all his useful feedback during the writing of my papers. Thanks are expressed to the Director of Nui Chua National Park in Vietnam for permission to collect the plants. vi I also want to thank the past and present instrumentation directors at the College of Pharmacy (OSU), Mr. Jack Fowble and Dr. Craig McElroy, for maintainance of NMR spectrometers, polarimeters, UV and IR spectrometers used in the present study. My most sincere and deepest thanks to past and present colleagues and friends in Prof. Kinghorn’s group, Drs. Ah-Reum Han, Jie Li, Joshua N. Fletcher, Li Pan, Mark Bahar, Patrick Still, Ye Deng, Yong Soo Kwon, Yulin Ren, and Ms. Annecie Benatrehina, Mr. Ben Naman and Mr. Mathew Rogman. I am deeply grateful for the finantial support received for this dissertation study vii and during my Ph.D. degree. The main source of finantial funding was the program project grant P01 CA125066, awarded to Prof. Kinghorn from the U.S. National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD. Other fundings received were from the Chemistry-Biology Interface Program (CBIP) Pre-doctoral Fellowship, supported by NIH (grant T32 GM008512), The Ohio State University (2009- 2011), and the Raymond W. Doskotch Fellowship in Natural Products Chemistry from the College of Pharmacy, The Ohio State University (2013-2014). Other financial fundings acknowledged are teaching and research assistanships, as well as from the Journal of Natural Products, sponsored by the American Society of Pharmacognosy, as part of my journal Administrator Assistant duties (2012-2014). In addition, I will like to give my most sincere thanks to my M.S. thesis advisor, Prof. Mikhail D. Antoun, Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy, (UPR-MSC) for encouraging me to continue graduate studies in vii natural products research and for his recommendation that led to me becoming part of Prof. Kinghorn’s group and a graduate student at The Ohio State University. Finally, but not least importantly, I want to express my deepest thanks and appreciation to my family and friends. First of all, to my parents, Lynette Pérez López and Cecilio Bueno Pintado, who installed in me, from an early age, to always strive for excellence, to work hard and to be responsibile, and for their unconditional love and support. To the rest of my family, especially my aunt and uncle, Inés and Yeyi, for always cheering me on, and celebrating my success. To all my friends in Columbus, who viii became my family away from home, and to those friends who remained in Puerto Rico, for their love, outstanding support and encouragement. viii Vita 1996................................................................Dorado Academy, High School, Dorado, Puerto Rico 2000................................................................B.S. Industrial Microbiology, University of Puerto Rico, Mayagüez Campus, Mayagüez ix 2008................................................................M.S. Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan 2008-2014 .....................................................Ph.D. Graduate Student, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Publications 1. Bueno Pérez, L.; Pan, L.; Muñoz Acuña, U.; Li, J.; Chai, H.-B.; Gallucci, J.
Recommended publications
  • Neuroprotective Mechanisms of Red Clover and Soy Isoflavones in Parkinson’S Disease Models
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.391268; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson’s disease models Aurélie de Rus Jacquet1,2*, Abeje Ambaw3,4, Mitali Arun Tambe1,5, Sin Ying Ma1, Michael Timmers6,7, Mary H. Grace6, Qing-Li Wu8, James E. Simon8, George P. McCabe9, Mary Ann Lila6, Riyi Shi3,10,11, Jean-Christophe Rochet1,11*. 1Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA 2Present affiliations: Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, G1V 4G2, Canada, and Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada 3Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA 4Present affiliation: Physiology Department, Monterey Peninsula College, Monterey, CA, 93940, USA. 5Present affiliation: National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA 6Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA 7Present affiliation: Berry Blue, Kannapolis, NC, 28081, USA 8Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA 9Department of Statistics, Purdue University, West Lafayette, IN 47907, USA 10Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA 11Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA * Corresponding authors: Jean-Christophe Rochet: [email protected] Aurélie de Rus Jacquet: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.391268; this version posted July 5, 2021.
    [Show full text]
  • Glucosylation of Isoflavonoids in Engineered Escherichia Coli
    Mol. Cells 2014; 37(2): 172-177 http://dx.doi.org/10.14348/molcells.2014.2348 Molecules and Cells http://molcells.org Established in 1990 Glucosylation of Isoflavonoids in Engineered Escherichia coli Ramesh Prasad Pandey1,3, Prakash Parajuli1,3, Niranjan Koirala1, Joo Ho Lee1, Yong Il Park2, and Jae Kyung Sohng1,* A glycosyltransferase, YjiC, from Bacillus licheniformis INTRODUCTION has been used for the modification of the commercially available isoflavonoids genistein, daidzein, biochanin A Isoflavonoids are biologically active secondary metabolites and formononetin. The in vitro glycosylation reaction, us- which are produced by most leguminous plants. However, non- ing UDP-α-D-glucose as a donor for the glucose moiety leguminous plants have also been reported to produce isofla- and aforementioned four acceptor molecules, showed the vonoids. Structurally, isoflavonoids differ from flavonoids ac- prominent glycosylation at 4′ and 7 hydroxyl groups, but cording to the position of the phenolic ring B attachment at the not at the 5th hydroxyl group of the A-ring, resulting in the C-3 position of the C-ring, instead of at the C-2 position in fla- production of genistein 4′-O-β-D-glucoside, genistein 7-O- vonoids. A number of isoflavonoid derivatives (more than 1600 β-D-glucoside (genistin), genistein 4′,7-O-β-D-diglucoside, to date) have been identified from different sources (Veitch, biochanin A-7-O-β-D-glucoside (sissotrin), daidzein 4′-O-β- 2007; 2013). In plants, the biosynthetic pathway of most of the D-glucoside, daidzein 7-O-β-D-glucoside (daidzin), daidzein flavonoid groups of compound share the same chalcone inter- 4′, 7-O-β-D-diglucoside, and formononetin 7-O-β-D-gluco- mediate (Pandey and Sohng, 2013).
    [Show full text]
  • Phytoalexins: Current Progress and Future Prospects
    Phytoalexins: Current Progress and Future Prospects Edited by Philippe Jeandet Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Philippe Jeandet (Ed.) Phytoalexins: Current Progress and Future Prospects This book is a reprint of the special issue that appeared in the online open access journal Molecules (ISSN 1420-3049) in 2014 (available at: http://www.mdpi.com/journal/molecules/special_issues/phytoalexins-progress). Guest Editor Philippe Jeandet Laboratory of Stress, Defenses and Plant Reproduction U.R.V.V.C., UPRES EA 4707, Faculty of Sciences, University of Reims, PO Box. 1039, 51687 Reims cedex 02, France Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Ran Dang 1. Edition 2015 MDPI • Basel • Beijing ISBN 978-3-03842-059-0 © 2015 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents About the Editor ............................................................................................................... VII List of
    [Show full text]
  • Amorpha Fruticosa – a Noxious Invasive Alien Plant in Europe Or a Medicinal Plant Against Metabolic Disease?
    fphar-08-00333 June 6, 2017 Time: 18:44 # 1 REVIEW published: 08 June 2017 doi: 10.3389/fphar.2017.00333 Amorpha fruticosa – A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? Ekaterina Kozuharova1, Adam Matkowski2, Dorota Wo´zniak2, Rumiana Simeonova3, Zheko Naychov4, Clemens Malainer5, Andrei Mocan6,7, Seyed M. Nabavi8 and Atanas G. Atanasov9,10,11* 1 Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria, 2 Department of Pharmaceutical Biology with Botanical Garden of Medicinal Plants, Medical University of Wroclaw, Poland, 3 Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria, 4 Sofia University St. Kliment Ohridski, Faculty of Medicine, Department of Surgery, Obstetrics and Gynecology, Division of Cardiac Surgery, University Hospital Lozenetz, Sofia, Bulgaria, 5 Independent Researcher, Vienna, Austria, 6 Department of Pharmaceutical Botany, Iuliu Ha¸tieganuUniversity of Medicine and Pharmacy, Cluj-Napoca, Romania, 7 ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania, 8 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, 9 Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland, 10 Department of Pharmacognosy, University of Vienna, Vienna, Austria, 11 Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria Amorpha fruticosa L. (Fabaceae) is a shrub native to North America which has been Edited by: Kalin Yanbo Zhang, cultivated mainly for its ornamental features, honey plant value and protective properties University of Hong Kong, Hong Kong against soil erosion.
    [Show full text]
  • Germination and Salinity Tolerance of Seeds of Sixteen Fabaceae Species in Thailand for Reclamation of Salt-Affected Lands
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 5, May 2020 E-ISSN: 2085-4722 Pages: 2188-2200 DOI: 10.13057/biodiv/d210547 Germination and salinity tolerance of seeds of sixteen Fabaceae species in Thailand for reclamation of salt-affected lands YONGKRIAT KU-OR1, NISA LEKSUNGNOEN1,2,♥, DAMRONGVUDHI ONWIMON3, PEERAPAT DOOMNIL1 1Department of Forest Biology, Faculty of Forestry, Kasetsart University. 50 Phahonyothin Rd, Lat yao, Chatuchak, Bangkok 10900, Thailand 2Center for Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University. 50 Phahonyothin Rd, Lat yao, Chatuchak, Bangkok 10900, Thailand. ♥email: [email protected] 3Department of Agronomy, Faculty of Agriculture, Kasetsart University. 50 Phahonyothin Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand. Manuscript received: 26 March 2020. Revision accepted: 24 April 2020. Abstract. Ku-Or Y, Leksungnoen N, Onwinom D, Doomnil P. 2020. Germination and salinity tolerance of seeds of sixteen Fabaceae species in Thailand for reclamation of salt-affected lands. Biodiversitas 21: 2188-2200. Over the years, areas affected by salinity have increased dramatically in Thailand, resulting in an urgent need for reclamation of salt-affected areas using salinity tolerant plant species. In this context, seed germination is an important process in plant reproduction and dispersion. This research aimed to study the ability of 16 fabaceous species to germinate and tolerate salt concentrations of at 6 different levels (concentration of sodium chloride solution, i.e., 0, 8, 16, 24, 32, and 40 dS m-1). The germination test was conducted daily for 30 days, and parameters such as germination percentage, germination speed, and germination synchrony were calculated. The electrical conductivity (EC50) was used to compare the salt-tolerant ability among the 16 species.
    [Show full text]
  • And S-Equol and Implication of Transactivation Functions (AF-1 and AF-2) in Estrogen Receptor-Induced Transcriptional Activity
    Nutrients 2010, 2, 340-354; doi:10.3390/nu2030340 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Communication Comparative Effects of R- and S-equol and Implication of Transactivation Functions (AF-1 and AF-2) in Estrogen Receptor-Induced Transcriptional Activity Svitlana Shinkaruk 1, Charlotte Carreau 1, Gilles Flouriot 2, Catherine Bennetau-Pelissero 1 and Mylène Potier 1,* 1 ENITA de Bordeaux, Unité Micronutriments Reproduction Santé, 1 Cours du Général de Gaulle, CS 40201, F-33175 Gradignan cedex, France; E-Mails: [email protected] (S.S); [email protected] (C.C.); [email protected] (C.B.-P.); 2 CNRS UMR 6026, 35042, Equipe "Récepteur des œstrogènes et destinée cellulaire", Rennes cedex, France; E-Mail: [email protected] * Author to whom correspondence should be addressed: E-Mail: [email protected]. Received: 4 January 2010; in revised form: 20 February 2010 / Accepted: 25 February 2010 / Published: 15 March 2010 Abstract: Equol, one of the main metabolites of daidzein, is a chiral compound with pleiotropic effects on cellular signaling. This property may induce activation/inhibition of the estrogen receptors (ER) or and therefore, explain the beneficial/deleterious effects of equol on estrogen-dependent diseases. With its asymmetric centre at position C-3, equol can exist in two enantiomeric forms (R- and S-equol). To elucidate the yet unclear mechanisms of ER activation/inhibition by equol, we performed a comprehensive analysis of ER and ER transactivation by racemic equol, as well as by enantiomerically pure forms. Racemic equol was prepared by catalytic hydrogenation from daidzein and separated into enantiomers by chiral HPLC.
    [Show full text]
  • Xxx-Xxx, Xxxx
    PSRU Journal of Science and Technology 5(3): 74-96, 2020 ความหลากหลายของพรรณพืชในวัดป่าเขาคงคา อ าเภอครบุรี จังหวัดนครราชสีมา PLANT DIVERSITY IN KHAO KHONG KHA FOREST MONASTERY KHON BURI DISTRICT, NAKHON RATCHASIMA PROVINCE เทียมหทัย ชูพันธ์* นาริชซ่า วาดี ศรัญญา กล้าหาญ สุนิษา ยิ้มละมัย และ สุวรรณี อุดมทรัพย์ Thiamhathai Choopan*, Narissa Wadee, Saranya Klahan, Sunisa Yimlamai and Suwannee Udomsub คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University *corresponding author e-mail: [email protected] (Received: 27 July 2020; Revised: 8 October 2020; Accepted: 9 October 2020) บทคัดย่อ การวิจัยครั้งนี้เป็นการศึกษาความหลากหลายของพรรณพืชในวัดป่าเขาคงคา อ าเภอครบุรี จังหวัดนครราชสีมา ด้วยการสุ่มวางแปลงตัวอย่าง จ านวน 18 แปลง ขนาด 2020 เมตร เพื่อส ารวจ ไม้ต้น และขนาด 55 เมตร เพื่อส ารวจไม้พื้นล่างร่วมกับการส ารวจตามเส้นทางศึกษาธรรมชาติ ผลการศึกษาพบว่ามีไม้ต้น จ านวน 38 วงศ์ 83 สกุล 98 ชนิด โดยไม้ต้นชนิดที่พบมากที่สุด ได้แก่ ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) รองลงมา คือ เสี้ยวป่า (Bauhinia saccocalyx Pierre) และแดง (Xylia xylocarpa (Roxb.) W. Theob. var. kerrii (Craib & Hutch.) I.C. Nielsen) ตามล าดับ ส่วนไม้ต้นชนิดที่มีค่าดัชนีความส าคัญสูงที่สุด คือ เสี้ยวป่า ติ้วเกลี้ยง และแดง ตามล าดับ ค่าดัชนี ความหลากหลายของไม้ต้น มีค่าเท่ากับ 3.6656 ค่าความสม่ าเสมอในการกระจายตัว มีค่าเท่ากับ 0.7995 ค่าความหลากหลาย มีค่าเท่ากับ 39.0785 นอกจากนั้นพบว่ามีไม้พื้นล่าง จ านวน 61 วงศ์ 137 สกุล 145 ชนิด ไม้พื้นล่างชนิดที่พบมากที่สุด ได้แก่ พลูช้าง (Scindapus officinalis
    [Show full text]
  • Medicinal Uses, Phytochemistry and Pharmacology of Pongamia Pinnata (L.) Pierre: a Review
    Journal of Ethnopharmacology 150 (2013) 395–420 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: A review L.M.R. Al Muqarrabun a, N. Ahmat a,n, S.A.S. Ruzaina a, N.H. Ismail a, I. Sahidin b a Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia b Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Haluoleo University (Unhalu), 93232 Kendari, Southeast Sulawesi, Indonesia article info abstract Article history: Ethnopharmacological relevance: Pongamia pinnata (L.) Pierre is one of the many plants with diverse Received 10 April 2013 medicinal properties where all its parts have been used as traditional medicine in the treatment and Received in revised form prevention of several kinds of ailments in many countries such as for treatment of piles, skin diseases, 19 August 2013 and wounds. Accepted 20 August 2013 Aim of this review: This review discusses the current knowledge of traditional uses, phytochemistry, Available online 7 September 2013 biological activities, and toxicity of this species in order to reveal its therapeutic and gaps requiring Keywords: future research opportunities. Pongamia pinnata Material and methods: This review is based on literature study on scientific journals and books from Fabaceae library and electronic sources such as ScienceDirect, PubMed, ACS, etc. Anti-diabetic Results: Several different classes of flavonoid derivatives, such as flavones, flavans, and chalcones, and Anti-inflammatory Karanjin several types of compounds including terpenes, steroid, and fatty acids have been isolated from all parts Pongamol of this plant.
    [Show full text]
  • Neuroprotective Mechanisms of Red Clover and Soy Isoflavones in Parkinson’S Disease Models
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.391268; this version posted January 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson’s disease models Aurélie de Rus Jacquet1,2*, Abeje Ambaw3,4, Mitali Arun Tambe1,5, Sin Ying Ma1, Michael Timmers6,7, Qing-Li Wu8, James E. Simon8, George P. McCabe9, Mary Ann Lila6, Riyi Shi3,10,11, Jean-Christophe Rochet1,11*. 1Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA 2Present affiliations: Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, G1V 4G2, Canada, and Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada 3Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA 4Present affiliation: Physiology Department, Monterey Peninsula College, Monterey, CA, 93940, USA. 5Present affiliation: National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA 6Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA 7Present affiliation: Berry Blue, Kannapolis, NC, 28081, USA 8Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA 9Department of Statistics, Purdue University, West Lafayette, IN 47907, USA 10Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA 11Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA * Corresponding authors: Jean-Christophe Rochet: [email protected] Aurélie de Rus Jacquet: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.391268; this version posted January 1, 2021.
    [Show full text]
  • CHAPTER ONE INTRODUCTION 1.1 Background of the Study
    CHAPTER ONE INTRODUCTION 1.1 Background of the study Throughout history, natural products have continued to play significant role as medicines and serve as repository of numerous bioactive compounds that serve as important leads in drug discovery (Dias et al., 2012). The significance of natural product based medicines is demonstrated by the reliance of more than half of the world’s population on natural products for their primary health care (Ekeanyanwu, 2011). The role of natural products in meeting the health needs of the Nigerian population has been stressed in many studies (Sofowora, 1982; Osemene et al., 2013). These natural products are rarely used solely for a particular disease condition. In some cases, a particular herbal product may be used for the treatment of related disease conditions or disease conditions with similar pathogenesis. There are situations where single herbal product is used for numerous unrelated disease conditions and for general body healing – this is the category where traditional use of Millettia aboensis falls. The contribution of natural products in disease control has been well acclaimed; however, the use of many plant based medicines for the treatment of disease conditions is yet to be fully accepted due to lack of scientific evidence on their efficacy and safety (Firenzuoli and Gori, 2007). The knowledge and uses of some medicinal plants are still based on cultural or folkloric believes. The full therapeutic potentials of herbal products would optimally be harnessed when their efficacy and toxicity are clearly validated and documented using scientific procedures. 1 Millettia aboensis is one of the plants considered to be an all-purpose plant in most parts of Africa because of the multiplicity of its use (Banzouzi et al., 2008).
    [Show full text]
  • Systematic Conservation Planning in Thailand
    SYSTEMATIC CONSERVATION PLANNING IN THAILAND DARAPORN CHAIRAT Thesis submitted in total fulfilment for the degree of Doctor of Philosophy BOURNEMOUTH UNIVERSITY 2015 This copy of the thesis has been supplied on condition that, anyone who consults it, is understood to recognize that its copyright rests with its author. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i ii Systematic Conservation Planning in Thailand Daraporn Chairat Abstract Thailand supports a variety of tropical ecosystems and biodiversity. The country has approximately 12,050 species of plants, which account for 8% of estimated plant species found globally. However, the forest cover of Thailand is under threats: habitat degradation, illegal logging, shifting cultivation and human settlement are the main causes of the reduction in forest area. As a result, rates of biodiversity loss have been high for some decades. The most effective tool to conserve biodiversity is the designation of protected areas (PA). The effective and most scientifically robust approach for designing networks of reserve systems is systematic conservation planning, which is designed to identify conservation priorities on the basis of analysing spatial patterns in species distributions and associated threats. The designation of PAs of Thailand were initially based on expert consultations selecting the areas that are suitable for conserving forest resources, not systematically selected. Consequently, the PA management was based on individual management plans for each PA. The previous work has also identified that no previous attempt has been made to apply the principles and methods of systematic conservation planning. Additionally, tree species have been neglected in previous analyses of the coverage of PAs in Thailand.
    [Show full text]
  • The Hongmu Challenge: a Briefing for the 66 Th Meeting of the CITES Standing Committee, January 2016 Acknowledgements
    The hongmu Challenge: A briefing for the 66 th meeting of the CITES Standing Committee, January 2016 ACKNOwLEDgEmENTS This briefing was written and edited by the Environmental Investigation Agency (EIA). INTRODUCTION This document has been produced with the financial assistance of UKaid, the European Union, the Norwegian Agency for Development The Hongmu sector is a significant Cooperation (NORAD), The Tilia Fund and Good Energies Foundation. The contents of this threat to the select group of timber publication are the sole responsibility of EIA. species targeted and constitutes a pressing conservation challenge for CITES and its Parties. January 2016 Since 2009, Asian demand has boomed for luxury furniture made with rare, high-value and deeply © Environmental Investigation Agency 2016 hued rosewoods, mahoganies and ebonies. Principally targeting 33 species within the All images © EIA unless otherwise stated. Pterocarpus , Diospyros , Dalbergia , Millettia and Cassia genera, sales in China’s Hongmu sector Report design: exceeded $25 billion in 2014. www.designsolutions.me.uk The sector is driving systematic illegal and unsustainable extraction at unprecedented rates and scales. Across Asia, Africa and Latin America, the nature of the industry is the same – unsustainable extraction leads to domestic protection which is then undermined by smuggling aided by corrupt officials; finally, better- governed range states seek CITES protections. Once CITES regulations come into force or when resources become exhausted, the criminal networks underpinning the trade are able to move quickly between species and countries. Key consuming countries – China and Vietnam – have no enforceable controls against illegally logged timber imports. CITES empowers these environmenTal invesTigaTion agenCy (eia) Parties as enforcement partners.
    [Show full text]