Aviation Week & Space Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Star Alliance Biometrics – Frequently Asked Questions
Star Alliance Biometrics – Frequently Asked Questions WHAT IS IT, AND WHERE CAN I USE IT? Q. What is Star Alliance Biometrics? A. Star Alliance Biometrics is a voluntary Star Alliance product that allows customers to take advantage of facial recognition technology to pass through security and boarding gates in a touchless manner. In the near future the range of process points will be gradually expanded – for example to baggage drop-off and business lounges. Q. How does Star Alliance Biometrics work? A. When an enrolled customer travels through a participating airport and on a participating airline, Star Alliance Biometrics facial recognition technology matches the customer's live image to the boarding pass information and biometric profile, allowing the customer to effortlessly pass through the enabled touchpoints. Q. Where is Star Alliance Biometrics available? A. At launch, it is available simultaneously at both Frankfurt/Main Airport (FRA) and Munich Airport (MUC) when travelling on either Lufthansa or SWISS. Q. Is Star Alliance Biometrics a Lufthansa product? A. Star Alliance Biometrics is a Star Alliance product designed in collaboration with many Star Alliance member airlines, including launch airline Lufthansa. REGISTRATION AND DATA PROCESSING Q. How can customers register for Star Alliance Biometrics? A. Any Lufthansa and SWISS Miles & More member can register for Star Alliance Biometrics via the Lufthansa app. After logging into the Lufthansa app, the registration can be started by selecting Star Alliance Biometrics in the main menu of the Lufthansa app. If customers do not yet have a Miles & More account, they can sign up for free. The registration consists of four easy steps - create a PIN and security questions, take a selfie, scan your passport, and provide your consent. -
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
China Southern Airlines' Sky Pearl Club
SKY PEARL CLUB MEMBERSHIP GUIDE Welcome to China Southern Airlines’ Sky Pearl Club The Sky Pearl Club is the frequent flyer program of China Southern Airlines. From the moment you join The Sky Pearl Club, you will experience a whole new world of exciting new travel opportunities with China Southern! Whether you’re traveling for business or pleasure, you’ll be earning mileage toward your award goals every time you fly. Many Elite tier services have been prepared for you. We trust this Guide will soon help you reach your award flight to your dream destinations. China Southern Sky Pearl Club cares about you! 1 A B Earning Sky Pearl Mileage Redeeming Sky Pearl Mileage Airlines China Southern Award Ticket and Award Upgrade Hotels SkyTeam Award Ticket and Award Upgrade Banks Telecommunications, Car Rentals, Business Travel , Dining and others C D Getting Acquainted with Sky Pearl Rules Enjoying Sky Pearl Elite Benefits Definition Membership tiers Membership Qualification and Mileage Account Elite Qualification Mileage Accrual Elite Benefits Mileage Redemption Membership tier and Elite benefits Others 2 A Earning Sky Pearl Mileage As the newest member of the worldwide SkyTeam alliance, whether it’s in the air or on the ground, The Sky Pearl Club gives you more opportunities than ever before to earn Award travel. When flying with China Southern or one of our many airline partners, you can earn FFP mileage. But, that’s not the only way! Hotels stays, car rentals, credit card services, telecommunication services or dining with our business-to-business partners can also help you earn mileage. -
The Antitrust Implications of Computer Reservations Systems (CRS's) Derek Saunders
Journal of Air Law and Commerce Volume 51 | Issue 1 Article 5 1985 The Antitrust Implications of Computer Reservations Systems (CRS's) Derek Saunders Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation Derek Saunders, The Antitrust Implications of Computer Reservations Systems (CRS's), 51 J. Air L. & Com. 157 (1985) https://scholar.smu.edu/jalc/vol51/iss1/5 This Comment is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. THE ANTITRUST IMPLICATIONS OF COMPUTER RESERVATIONS SYSTEMS (CRS's) DEREK SAUNDERS THE PASSAGE of the Airline Deregulation Act' dramat- ically altered the airline industry. Market forces, rather than government agencies, 2 began to regulate the indus- try. The transition, however, has not been an easy one. Procedures and relationships well suited to a regulated in- dustry are now viewed as outdated, onerous, and even anticompetitive. The current conflict over carrier-owned computer res- ervation systems (CRS's) represents one instance of these problems.3 The air transportation distribution system re- lies heavily on the use of CRS's, particularly since deregu- lation and the resulting increase in airline activity. 4 One I Pub. L. No. 95-504, 92 Stat. 1705 (codified at 49 U.S.C.A. § 1401 (Supp. 1984)). 2 Competitive Market Investigation, CAB Docket 36,595 (Dec. 16, 1982) at 3. For a discussion of deregulation in general and antitrust problems specifically, see Beane, The Antitrust Implications of Airline Deregulation, 45 J. -
Rocket Propulsion Fundamentals 2
https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Baggage Between Points To/From Canada (Toronto)
1st revised page 1 CTA(A) №1 Ukraine International Airlines International Scheduled Tariff 2017 Issue date: February 09, 2018 (as per CTA SP# 62610) Effective date: February 10, 2018 CTA(A) No. 1 Tariff Containing Rules Applicable to Scheduled Services for the Transportation of Passengers and their Baggage Between Points to/from Canada (Toronto) Issue Date: November 20,2017 Issued By: Ukraine International Airlines Effective Date: December 20,2017 Ukraine International Airlines CTA(A) №1 3 1st revised page Table of Contents Table of Contents .......................................................................... 3 Part I – General Tariff Information ................................................. 8 Explanation of Abbreviations, Reference Marks and Symbols............................ 8 Rule 1: Definitions ................................................................................................... 9 Rule 5: Application of Tariff .................................................................................. 17 (A) General ............................................................................................................................. 17 (B) Gratuitous Carriage ........................................................................................................... 18 (C) Passenger Recourse......................................................................................................... 18 Rule 7: Protection of Personal Information ......................................................... 19 (A) Accountability -
Development of a Reliable Performance Gas Generator of 75 Tonf-Class Liquid Rocket Engine for the Korea Space Launch Vehicle II
DOI: 10.13009/EUCASS2019-521 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Development of a Reliable Performance Gas Generator of 75 tonf-class Liquid Rocket Engine for the Korea Space Launch Vehicle II Byoungjik Lim*, Munki Kim*, Donghyuk Kang*, Hyeon-Jun Kim*, Jong-Gyu Kim*, and Hwan-Seok Choi* *Korea Aerospace Research Institute 169-84, Gwahak-ro, Yuseong-Gu Daejeon, 34133, South Korea [email protected] Abstract In this paper, development history and result of a reliable performance gas generator of 75 tonf-class liquid rocket engine is described. Based on the experience acquired from the 30 tonf-class gas generator development, the almost identical concept was adopted to 75 tonf-class gas generator such as a coaxial swirl injector and a regeneratively cooled combustion chamber. During the entire development process using the full-scale and subscale technological demonstration model and development model up to now, combustion tests of over 430 times and cumulative time of over 17 700 seconds have been carried out for a 75 tonf-class gas generate. Now the 75 tonf-class fuel-rich gas generator shows very reliable and reproducible characteristics throughout the entire lifetime including the flight test which was done with the test launch vehicle in November 2018. Thus, it can be said that the development of a 75 tonf-class fuel rich gas generator which will be used in Korea first independent space launch vehicle, KSLV-II was finished successfully. 1. Introduction As a leading institute for technology which is related with space launch vehicle and a national space development agency in the Republic of KOREA, the Korea Aerospace Research Institute (KARI) has been continuously researching and developing technology related to space launch vehicles since establishment in 1989. -
6. Chemical-Nuclear Propulsion MAE 342 2016
2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20 -
Falcon 1 User's Guide
Falcon 1 Launch Vehicle Payload User’s Guide Rev 7 TABLE OF CONTENTS 1. Introduction 4 1.1. Revision History 4 1.2. Purpose 6 1.3. Company Description 6 1.4. Falcon Program Overview 6 1.5. Mission Management 7 2. Falcon 1 Launch Vehicles 8 2.1. Overview 8 2.1.1. Falcon 1 9 2.1.2. Falcon 1e 11 2.2. Availability 12 2.3. Reliability 13 2.4. Performance 15 2.5. Pricing 16 2.6. Standard Services 16 2.7. Non‐standard Services 16 2.8. Vehicle Axes/Attitude Definitions 17 3. Requirements & Environments 18 3.1. Mass Properties 18 3.2. Payload Interfaces 19 3.2.1. Falcon Payload Attach Fittings 19 3.2.2. Test Fittings and Fitcheck Policy 19 3.2.3. Electrical Design Criteria 19 3.3. Documentation Requirements 21 3.4. Payload Environments 23 3.4.1. Transportation Environments 23 3.4.2. Humidity, Cleanliness and Thermal Control 23 3.4.3. Payload Air Conditioning 24 3.4.4. Launch and Flight Environments 24 4. Facilities 32 4.1. Headquarters – Hawthorne, California 32 4.2. Washington, DC 32 4.3. Test Facility ‐ Central Texas 32 4.4. Launch Site – Kwajalein Atoll 33 4.4.1. Processing Services and Equipment 33 5. Launch Operations 36 5.1. Launch Control Organization 36 5.2. Mission Integration 37 5.2.1. Payload Transport to Launch Site 38 5.2.2. Payload Integration 38 5.2.3. Example Flight Profiles 41 D000973 Rev Falcon 1 User’s Guide ‐ D000973 Rev. 7 Page | 3 6. -
Propulsione Aeronautica 2020/2021 Francesco Barato
PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE -
The Market for Aviation Turbofan Engines
The Market for Aviation Turbofan Engines Product Code #F640 A Special Focused Market Segment Analysis by: Aviation Gas Turbine Forecast Analysis 1 The Market for Aviation Turbofan Engines 2010-2019 Table of Contents Executive Summary .................................................................................................................................................2 Introduction................................................................................................................................................................2 Trends..........................................................................................................................................................................3 Market Focus .............................................................................................................................................................3 Competitive Environment.......................................................................................................................................4 Figure 1 - The Market for Aviation Turbofan Engines Unit Production 2010 - 2019 (Bar Graph) .................................................................................6 Figure 2 - The Market for Aviation Turbofan Engines Value of Production 2010 - 2019 (Bar Graph)...........................................................................6 Manufacturers Review.............................................................................................................................................7