The Abel Prize Laureate 2016 Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
La Controverse De 1874 Entre Camille Jordan Et Leopold Kronecker
La controverse de 1874 entre Camille Jordan et Leopold Kronecker. * Frédéric Brechenmacher ( ). Résumé. Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au XIXe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considèrerions aujourd’hui équivalents, nous permettra de questionner l’identité algébrique de pratiques polynomiales de manipulations de « formes » mises en œuvre sur une période antérieure aux approches structurelles de l’algèbre linéaire qui donneront à ces pratiques l’identité de méthodes de caractérisation des classes de similitudes de matrices. Nous montrerons que les pratiques de réductions canoniques et de calculs d’invariants opposées par Jordan et Kronecker manifestent des identités multiples indissociables d’un contexte social daté et qui dévoilent des savoirs tacites, des modes de pensées locaux mais aussi, au travers de regards portés sur une histoire à long terme impliquant des travaux d’auteurs comme Lagrange, Laplace, Cauchy ou Hermite, deux philosophies internes sur la signification de la généralité indissociables d’idéaux disciplinaires opposant algèbre et arithmétique. En questionnant les identités culturelles de telles pratiques cet article vise à enrichir l’histoire de l’algèbre linéaire, souvent abordée dans le cadre de problématiques liées à l’émergence de structures et par l’intermédiaire de l’histoire d’une théorie, d’une notion ou d’un mode de raisonnement. -
A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered. -
Gromov Receives 2009 Abel Prize
Gromov Receives 2009 Abel Prize . The Norwegian Academy of Science Medal (1997), and the Wolf Prize (1993). He is a and Letters has decided to award the foreign member of the U.S. National Academy of Abel Prize for 2009 to the Russian- Sciences and of the American Academy of Arts French mathematician Mikhail L. and Sciences, and a member of the Académie des Gromov for “his revolutionary con- Sciences of France. tributions to geometry”. The Abel Prize recognizes contributions of Citation http://www.abelprisen.no/en/ extraordinary depth and influence Geometry is one of the oldest fields of mathemat- to the mathematical sciences and ics; it has engaged the attention of great mathema- has been awarded annually since ticians through the centuries but has undergone Photo from from Photo 2003. It carries a cash award of revolutionary change during the last fifty years. Mikhail L. Gromov 6,000,000 Norwegian kroner (ap- Mikhail Gromov has led some of the most impor- proximately US$950,000). Gromov tant developments, producing profoundly original will receive the Abel Prize from His Majesty King general ideas, which have resulted in new perspec- Harald at an award ceremony in Oslo, Norway, on tives on geometry and other areas of mathematics. May 19, 2009. Riemannian geometry developed from the study Biographical Sketch of curved surfaces and their higher-dimensional analogues and has found applications, for in- Mikhail Leonidovich Gromov was born on Decem- stance, in the theory of general relativity. Gromov ber 23, 1943, in Boksitogorsk, USSR. He obtained played a decisive role in the creation of modern his master’s degree (1965) and his doctorate (1969) global Riemannian geometry. -
MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work. -
Kummer, Regular Primes, and Fermat's Last Theorem
e H a r v a e Harvard College r d C o l l e Mathematics Review g e M a t h e m Vol. 2, No. 2 Fall 2008 a t i c s In this issue: R e v i ALLAN M. FELDMAN and ROBERTO SERRANO e w , Arrow’s Impossibility eorem: Two Simple Single-Profile Versions V o l . 2 YUFEI ZHAO , N Young Tableaux and the Representations of the o . Symmetric Group 2 KEITH CONRAD e Congruent Number Problem A Student Publication of Harvard College Website. Further information about The HCMR can be Sponsorship. Sponsoring The HCMR supports the un- found online at the journal’s website, dergraduate mathematics community and provides valuable high-level education to undergraduates in the field. Sponsors http://www.thehcmr.org/ (1) will be listed in the print edition of The HCMR and on a spe- cial page on the The HCMR’s website, (1). Sponsorship is available at the following levels: Instructions for Authors. All submissions should in- clude the name(s) of the author(s), institutional affiliations (if Sponsor $0 - $99 any), and both postal and e-mail addresses at which the cor- Fellow $100 - $249 responding author may be reached. General questions should Friend $250 - $499 be addressed to Editors-In-Chief Zachary Abel and Ernest E. Contributor $500 - $1,999 Fontes at [email protected]. Donor $2,000 - $4,999 Patron $5,000 - $9,999 Articles. The Harvard College Mathematics Review invites Benefactor $10,000 + the submission of quality expository articles from undergrad- uate students. -
Prvních Deset Abelových Cen Za Matematiku
Prvních deset Abelových cen za matematiku The first ten Abel Prizes for mathematics [English summary] In: Michal Křížek (author); Lawrence Somer (author); Martin Markl (author); Oldřich Kowalski (author); Pavel Pudlák (author); Ivo Vrkoč (author); Hana Bílková (other): Prvních deset Abelových cen za matematiku. (English). Praha: Jednota českých matematiků a fyziků, 2013. pp. 87–88. Persistent URL: http://dml.cz/dmlcz/402234 Terms of use: © M. Křížek © L. Somer © M. Markl © O. Kowalski © P. Pudlák © I. Vrkoč Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Summary The First Ten Abel Prizes for Mathematics Michal Křížek, Lawrence Somer, Martin Markl, Oldřich Kowalski, Pavel Pudlák, Ivo Vrkoč The Abel Prize for mathematics is an international prize presented by the King of Norway for outstanding results in mathematics. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) who found that there is no explicit formula for the roots of a general polynomial of degree five. The financial support of the Abel Prize is comparable with the Nobel Prize, i.e., about one million American dollars. Niels Henrik Abel (1802–1829) M. Křížek a kol.: Prvních deset Abelových cen za matematiku, JČMF, Praha, 2013 87 Already in 1899, another famous Norwegian mathematician Sophus Lie proposed to establish an Abel Prize, when he learned that Alfred Nobel would not include a prize in mathematics among his five proposed Nobel Prizes. -
Advanced Algebra
Cornerstones Series Editors Charles L. Epstein, University of Pennsylvania, Philadelphia Steven G. Krantz, University of Washington, St. Louis Advisory Board Anthony W. Knapp, State University of New York at Stony Brook, Emeritus Anthony W. Knapp Basic Algebra Along with a companion volume Advanced Algebra Birkhauser¨ Boston • Basel • Berlin Anthony W. Knapp 81 Upper Sheep Pasture Road East Setauket, NY 11733-1729 U.S.A. e-mail to: [email protected] http://www.math.sunysb.edu/˜ aknapp/books/b-alg.html Cover design by Mary Burgess. Mathematics Subject Classicification (2000): 15-01, 20-02, 13-01, 12-01, 16-01, 08-01, 18A05, 68P30 Library of Congress Control Number: 2006932456 ISBN-10 0-8176-3248-4 eISBN-10 0-8176-4529-2 ISBN-13 978-0-8176-3248-9 eISBN-13 978-0-8176-4529-8 Advanced Algebra ISBN 0-8176-4522-5 Basic Algebra and Advanced Algebra (Set) ISBN 0-8176-4533-0 Printed on acid-free paper. c 2006 Anthony W. Knapp All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. -
Methodology and Metaphysics in the Development of Dedekind's Theory
Methodology and metaphysics in the development of Dedekind’s theory of ideals Jeremy Avigad 1 Introduction Philosophical concerns rarely force their way into the average mathematician’s workday. But, in extreme circumstances, fundamental questions can arise as to the legitimacy of a certain manner of proceeding, say, as to whether a particular object should be granted ontological status, or whether a certain conclusion is epistemologically warranted. There are then two distinct views as to the role that philosophy should play in such a situation. On the first view, the mathematician is called upon to turn to the counsel of philosophers, in much the same way as a nation considering an action of dubious international legality is called upon to turn to the United Nations for guidance. After due consideration of appropriate regulations and guidelines (and, possibly, debate between representatives of different philosophical fac- tions), the philosophers render a decision, by which the dutiful mathematician abides. Quine was famously critical of such dreams of a ‘first philosophy.’ At the oppos- ite extreme, our hypothetical mathematician answers only to the subject’s internal concerns, blithely or brashly indifferent to philosophical approval. What is at stake to our mathematician friend is whether the questionable practice provides a proper mathematical solution to the problem at hand, or an appropriate mathematical understanding; or, in pragmatic terms, whether it will make it past a journal referee. In short, mathematics is as mathematics does, and the philosopher’s task is simply to make sense of the subject as it evolves and certify practices that are already in place. -
Quadratic Forms and Automorphic Forms
Quadratic Forms and Automorphic Forms Jonathan Hanke May 16, 2011 2 Contents 1 Background on Quadratic Forms 11 1.1 Notation and Conventions . 11 1.2 Definitions of Quadratic Forms . 11 1.3 Equivalence of Quadratic Forms . 13 1.4 Direct Sums and Scaling . 13 1.5 The Geometry of Quadratic Spaces . 14 1.6 Quadratic Forms over Local Fields . 16 1.7 The Geometry of Quadratic Lattices – Dual Lattices . 18 1.8 Quadratic Forms over Local (p-adic) Rings of Integers . 19 1.9 Local-Global Results for Quadratic forms . 20 1.10 The Neighbor Method . 22 1.10.1 Constructing p-neighbors . 22 2 Theta functions 25 2.1 Definitions and convergence . 25 2.2 Symmetries of the theta function . 26 2.3 Modular Forms . 28 2.4 Asymptotic Statements about rQ(m) ...................... 31 2.5 The circle method and Siegel’s Formula . 32 2.6 Mass Formulas . 34 2.7 An Example: The sum of 4 squares . 35 2.7.1 Canonical measures for local densities . 36 2.7.2 Computing β1(m) ............................ 36 2.7.3 Understanding βp(m) by counting . 37 2.7.4 Computing βp(m) for all primes p ................... 38 2.7.5 Computing rQ(m) for certain m ..................... 39 3 Quaternions and Clifford Algebras 41 3.1 Definitions . 41 3.2 The Clifford Algebra . 45 3 4 CONTENTS 3.3 Connecting algebra and geometry in the orthogonal group . 47 3.4 The Spin Group . 49 3.5 Spinor Equivalence . 52 4 The Theta Lifting 55 4.1 Classical to Adelic modular forms for GL2 .................. -
Interviewed by T. Christine Stevens)
KENNETH A. ROSS JANUARY 8, 2011 AND JANUARY 5, 2012 (Interviewed by T. Christine Stevens) How did you get involved in the MAA? As a good citizen of the mathematical community, I was a member of MAA from the beginning of my career. But I worked in an “AMS culture,” so I wasn’t actively involved in the MAA. As of January, 1983, I had never served on an MAA committee. But I had been Associate Secretary of the AMS from 1971 to 1981, and thus Len Gillman (who was MAA Treasurer at the time) asked me to be MAA Secretary. There was a strong contrast between the cultures of the AMS and the MAA, and my first two years were very hard. Did you receive mentoring in the MAA at the early stages of your career? From whom? As a graduate student at the University of Washington, I hadn’t even been aware that the department chairman, Carl Allendoerfer, was serving at the time as MAA President. My first mentor in the MAA was Len Gillman, who got me involved with the MAA. Being Secretary and Treasurer, respectively, we consulted a lot, and he was the one who helped me learn the MAA culture. One confession: At that time, approvals for new unbudgeted expenses under $500 were handled by the Secretary, the Treasurer and the Executive Director, Al Wilcox. The requests usually came to me first. Since Len was consistently tough, and Al was a push-over, I would first ask the one whose answer would agree with mine, and then with a 2-0 vote, I didn’t have to even bother the other one. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
Programme 2009 the Abel Prize Ceremony 19 May 2009 Procession Accompanied by the “Abel Fanfare” Music: Klaus Sandvik
Programme 2009 The Abel Prize Ceremony 19 May 2009 Procession accompanied by the “Abel Fanfare” Music: Klaus Sandvik. Performed by three musicians from the Staff Band of the Norwegian Defence Forces Their Majesties King Harald and Queen Sonja enter the hall Soroban Arve Henriksen (trumpet) (Music: Arve Henriksen) Opening by Øyvind Østerud President of the Norwegian Academy of Science and Letters Eg veit i himmerik ei borg Trio Mediæval, Arve Henriksen (Norwegian folk tune from Hallingdal, arr. Linn A. Fuglseth) The Abel Prize Award Ceremony Professor Kristian Seip Chairman of the Abel Committee The Committee’s citation His Majesty King Harald presents the Abel Prize to Mikhail Leonidovich Gromov Acceptance speech by Mikhail Leonidovich Gromov Closing remarks by Professor Øyvind Østerud President of the Norwegian Academy of Science and Letters Till, till Tove Trio Mediæval, Arve Henriksen, Birger Mistereggen (percussion) (Norwegian folk tune from Vestfold, arr. Tone Krohn) Their Majesties King Harald and Queen Sonja leave the hall Procession leaves the hall Other guests leave the hall when the procession has left to a skilled mathematics teacher in the upper secondary school is called after Abel’s own Professor Øyvind Østerud teacher, Bernt Michael Holmboe. There is every reason to remember Holmboe, who was President of the Norwegian Academy of Science and Letters Abel’s mathematics teacher at Christiania Cathedral School from when Abel was 16. Holmboe discovered Abel’s talent, inspired him, encouraged him, and took the young pupil considerably further than the curriculum demanded. He pointed him to the professional literature, helped Your Majesties, Excellencies, dear friends, him with overseas contacts and stipends and became a lifelong colleague and friend.