Unnur Bjarnadóttir
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raptors Conservation
RaptorsConservation ISSN 1814–0076 ПЕРНАТЫЕХИЩНИКИИИХОХРАНА 2011№21 Ðàáî÷èé áþëëåòåíü î ïåðíàòûõ õèùíèêàõ Âîñòî÷íîé Åâðîïû è Ñåâåðíîé Àçèè The Newsletter of the raptors of the East Europe and North Asia Ñâèäåòåëüñòâî î ðåãèñòðàöèè ÑÌÈ ÏÈ ¹ÔÑ77-38809 îò 08.02.2010 ã. Áþëëåòåíü «Ïåðíàòûå õèùíèêè è èõ îõðàíà» The Raptors Conservation Newsletter has been ó÷ðåæä¸í ìåæðåãèîíàëüíîé áëàãîòâîðèòåëüíîé founded by the non-governmental organisations îáùåñòâåííîé îðãàíèçàöèåé «Ñèáèðñêèé ýêî- Siberian Environmental Center (Novosibirsk) and ëîãè÷åñêèé öåíòð» (Íîâîñèáèðñê) è íàó÷íî-èñ- Center of Field Studies (Nizhniy Novgorod). ñëåäîâàòåëüñêîé îáùåñòâåííîé îðãàíèçàöèåé The Raptors Conservation Newsletter is published «Öåíòð ïîëåâûõ èññëåäîâàíèé» (Í. Íîâãîðîä). under the partnership agreement with the Áþëëåòåíü èçäà¸òñÿ â ïàðòí¸ðñòâå ñ Èíñòèòó- Institute of Systematics and Ecology of Animals, òîì ñèñòåìàòèêè è ýêîëîãèè æèâîòíûõ ÑÎ ÐÀÍ Siberian Branch of RAS (Novosibirsk). (Íîâîñèáèðñê). Ðåäàêòîðû íîìåðà: Ýëüâèðà Íèêîëåíêî (Ñèá- Editors: Elvira Nikolenko (Siberian Environmental ýêîöåíòð, Íîâîñèáèðñê) è Èãîðü Êàðÿêèí Center, Novosibirsk) and Igor Karyakin (Center of (Öåíòð ïîëåâûõ èññëåäîâàíèé, Í. Íîâãîðîä) Field Studies, N. Novgorod) Ôîòîãðàôèÿ íà ëèöåâîé ñòîðîíå îáëîæêè: Photo on the front cover: Female of the Upland Ñàìêà ìîõíîíîãîãî êóðãàííèêà (Buteo hemila- Buzzard (Buteo hemilasius) of dark morph in the sius) ò¸ìíîé ìîðôû â ãíåçäå íà ïëàòôîðìå. Óá- nest on the artificial nesting platform. Ubsunur ñóíóðñêàÿ êîòëîâèíà, Ðåñïóáëèêà Òûâà, Ðîññèÿ, depression, Republic of Tyva, Russia, 3 June 2010. 3 èþíÿ 2010 ã. Ôîòî È. Êàðÿêèíà. Photo by I. Karyakin.  èëëþñòðàöèè çàäíåé ñòîðîíû îáëîæêè èñ- Photos on the back cover by I. Karyakin. ïîëüçîâàíû ôîòîãðàôèè È. Êàðÿêèíà. Äèçàéí: Ä. Ñåíîòðóñîâ, À. Êëåù¸â Design by D. -
Incomplete Kloosterman Sums to Prime Power Modules
Bulletin T. CLIV de l’Acade´mie serbe des sciences et des arts 2021 − Classe des Sciences mathe´matiques et naturelles Sciences mathe´matiques, o 46 N INCOMPLETE KLOOSTERMAN SUMS TO PRIME POWER MODULES M.A˙ . KOROLEV, I. S. REZVYAKOVA To the Blessed Memory of Professor Aleksandar Pavle Ivic´ (6.3.1949 – 27.12.2020) (Presented at the 3nd Meeting, held on April 23, 2021) A b s t r a c t. We prove that for prime p, p + , integer r 4 and q = pr an → ∞ ! incomplete Kloosterman sum of length N to modulus q can be estimated non-trivially (with 1/(r 1) power-saving factor) for very small N, namely, for N (q log q) − . ≫ AMS Mathematics Subject Classification (2020): 11L05. Key Words: Kloosterman sums, inverse residues, Karatsuba’s method, powerful mod- ules. 1. Introduction Let q, a, b be integers, q ! 3, (a, q) = 1, and let 1 < N < N1 < q, N1 " 2N. An incomplete Kloosterman sum is an exponential sum of the type ′ Sq(N) = Sq(a, b; N, N1) = eq(an + bn). N<!n!N1 2πiα Here, as usual, eq(u) = e(u/q), e(α) = e , prime sign means the summation over n coprime to q and n = 1/n denotes the inverse residue to n modulo q, that is, the 74 M.A˙ . Korolev, I. S. Rezvyakova solution of the congruence nn 1 (mod q). Both the classical A. Weil’s bound ≡ p 1 − ep(an + bn) " 2√p " n=1 " " ! " " " for prime p (see [1] and [2, A"ppendix V, 11]) a"nd “multiplicative” property of com- plete Kloosterman sums q ′ Sq(a, b) = eq(an + bn) n=1 ! r together with the precise expressions for Sq(a, b), q = p , r ! 2 (see, for example, [3, Lemma 4b], [4, formulas (50)]) lead to the estimate S (N) √q τ(q) log q, | q | ≪ where τ(q) denotes divisor function. -
Subversion in the Soviet Animaton of the Brezhnev Period: an Aesopian Reading of Andrei Khrzhanovsky’S Pushkiniana
Subversion in the Soviet Animaton of the Brezhnev Period: An Aesopian Reading of Andrei Khrzhanovsky’s Pushkiniana by Irina Chiaburu A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Art History Approved, Thesis Committee Dr. Margrit Schreier, PhD Advisor Dr. Marion G. Müller, 2nd Reviewer Dr. Johan F. Hartle , 3rd Reviewer, (external) Date of Defense: January 13th, 2015 1 Table of Contents Introduction..........................................................................................................................................2 The Cultural Liberalism of Khrushchev...............................................................................................9 The Re-emergence of the New Soviet Intelligentsia............................................................12 The Cultural Renaissance and Emergence of the Cultural Public Sphere...........................21 The End of Cultural Thaw and Brezhnev Reaction............................................................................32 The Manege Affair...............................................................................................................32 Stagnation: A Historical and Political Overview of the Period............................................38 The Late Socialist Condition................................................................................................42 From Parallel Events to Parallel Culture..............................................................................45 The New -
Introduction to Theoretical Computer Science
BOAZBARAK INTRODUCTIONTO THEORETICAL COMPUTERSCIENCE TEXTBOOK IN PREPARATION. AVAILABLEON HTTPS://INTROTCS.ORG Text available on https://github.com/boazbk/tcs - please post any issues there - thank you! This version was compiled on Tuesday 30th October, 2018 09:09 Copyright © 2018 Boaz Barak This work is licensed under a Creative Commons “Attribution-NonCommercial- NoDerivatives 4.0 International” license. To Ravit, Alma and Goren. Contents Preface 19 Preliminaries 27 0 Introduction 29 1 Mathematical Background 47 2 Computation and Representation 85 I Finite computation 117 3 Defining computation 119 4 Syntactic sugar, and computing every function 151 5 Code as data, data as code 171 II Uniform computation 195 6 Loops and infinity 197 7 Equivalent models of computation 231 8 Universality and uncomputability 269 9 Restricted computational models 295 10 Is every theorem provable? 325 III Efficient algorithms 341 11 Efficient computation 343 Compiled on 10.30.2018 09:09 6 12 Modeling running time 363 13 Polynomial-time reductions 391 14 NP, NP completeness, and the Cook-Levin Theorem 405 15 What if P equals NP? 423 16 Space bounded computation 443 IV Randomized computation 445 17 Probability Theory 101 447 18 Probabilistic computation 465 19 Modeling randomized computation 477 V Advanced topics 495 20 Cryptography 497 21 Proofs and algorithms 523 22 Quantum computing 525 VI Appendices 555 A The NAND Programming Language 557 B The NAND++ Programming Language 589 C The Lambda Calculus 601 Contents (detailed) Preface 19 0.1 To the student ........................ 21 0.1.1 Is the effort worth it? . 21 0.2 To potential instructors ................... 22 0.3 Acknowledgements .................... -
Introduction to Theoretical Computer Science
BOAZBARAK INTRODUCTIONTO THEORETICAL COMPUTERSCIENCE TEXTBOOK IN PREPARATION. AVAILABLEON HTTPS://INTROTCS.ORG Text available on https://github.com/boazbk/tcs - please post any issues there - thank you! This version was compiled on Wednesday 26th August, 2020 18:10 Copyright © 2020 Boaz Barak This work is licensed under a Creative Commons “Attribution-NonCommercial- NoDerivatives 4.0 International” license. To Ravit, Alma and Goren. Contents Preface 9 Preliminaries 17 0 Introduction 19 1 Mathematical Background 37 2 Computation and Representation 73 I Finite computation 111 3 Defining computation 113 4 Syntactic sugar, and computing every function 149 5 Code as data, data as code 175 II Uniform computation 205 6 Functions with Infinite domains, Automata, and Regular expressions 207 7 Loops and infinity 241 8 Equivalent models of computation 271 9 Universality and uncomputability 315 10 Restricted computational models 347 11 Is every theorem provable? 365 Compiled on 8.26.2020 18:10 6 III Efficient algorithms 385 12 Efficient computation: An informal introduction 387 13 Modeling running time 407 14 Polynomial-time reductions 439 15 NP, NP completeness, and the Cook-Levin Theorem 465 16 What if P equals NP? 483 17 Space bounded computation 503 IV Randomized computation 505 18 Probability Theory 101 507 19 Probabilistic computation 527 20 Modeling randomized computation 539 V Advanced topics 561 21 Cryptography 563 22 Proofs and algorithms 591 23 Quantum computing 593 VI Appendices 625 Contents (detailed) Preface 9 0.1 To the student ........................ 10 0.1.1 Is the effort worth it? . 11 0.2 To potential instructors ................... 12 0.3 Acknowledgements ..................... 14 Preliminaries 17 0 Introduction 19 0.1 Integer multiplication: an example of an algorithm .