Incomplete Kloosterman Sums to Prime Power Modules
Bulletin T. CLIV de l’Acade´mie serbe des sciences et des arts 2021 − Classe des Sciences mathe´matiques et naturelles Sciences mathe´matiques, o 46 N INCOMPLETE KLOOSTERMAN SUMS TO PRIME POWER MODULES M.A˙ . KOROLEV, I. S. REZVYAKOVA To the Blessed Memory of Professor Aleksandar Pavle Ivic´ (6.3.1949 – 27.12.2020) (Presented at the 3nd Meeting, held on April 23, 2021) A b s t r a c t. We prove that for prime p, p + , integer r 4 and q = pr an → ∞ ! incomplete Kloosterman sum of length N to modulus q can be estimated non-trivially (with 1/(r 1) power-saving factor) for very small N, namely, for N (q log q) − . ≫ AMS Mathematics Subject Classification (2020): 11L05. Key Words: Kloosterman sums, inverse residues, Karatsuba’s method, powerful mod- ules. 1. Introduction Let q, a, b be integers, q ! 3, (a, q) = 1, and let 1 < N < N1 < q, N1 " 2N. An incomplete Kloosterman sum is an exponential sum of the type ′ Sq(N) = Sq(a, b; N, N1) = eq(an + bn). N<!n!N1 2πiα Here, as usual, eq(u) = e(u/q), e(α) = e , prime sign means the summation over n coprime to q and n = 1/n denotes the inverse residue to n modulo q, that is, the 74 M.A˙ . Korolev, I. S. Rezvyakova solution of the congruence nn 1 (mod q). Both the classical A. Weil’s bound ≡ p 1 − ep(an + bn) " 2√p " n=1 " " ! " " " for prime p (see [1] and [2, A"ppendix V, 11]) a"nd “multiplicative” property of com- plete Kloosterman sums q ′ Sq(a, b) = eq(an + bn) n=1 ! r together with the precise expressions for Sq(a, b), q = p , r ! 2 (see, for example, [3, Lemma 4b], [4, formulas (50)]) lead to the estimate S (N) √q τ(q) log q, | q | ≪ where τ(q) denotes divisor function.
[Show full text]