Deep-Sea Biodiversity and Biogeography: Insights from the Abyss

Total Page:16

File Type:pdf, Size:1020Kb

Deep-Sea Biodiversity and Biogeography: Insights from the Abyss International Seabed Authority Seamount Biodiversity Symposium, March 2006 Deep-sea Biodiversity and Biogeography: Perspectives from the Abyss Craig R. Smith, Jeff Drazen, Sarah L. Mincks University of Hawai’i, Manoa, 1000 Pope Rd., Honolulu, Hawaii 96822 USA Abstract. The abyssal seafloor is a vast, interconnected habitat punctuated by seamounts and mid-ocean ridges. A range of factors control community structure and biogeography in the abyss including particulate-organic-carbon flux to the seafloor, water depth, flow regime, ocean circulation, seafloor topography and geologic/evolutionary history. In some basins such as the North Atlantic, regional species diversity declines from the slope to the abyss, possibly due to decreasing food availability. Biogeographic patterns and apparent species ranges vary substantially with size class. Many abyssal megafauna, including macrourid fish and elasipod holothurians, have low to moderate local diversity and very broad (including cosmopolitan) distributions, with trophic regime (or food flux from surface waters) appearing to control species turnover. The macrofauna, in particular polychaetes and crustaceans, exhibits high local diversity, and evidence of species radiation in the abyss. Both taxa have some widely distributed species, but also exhibit substantial turnover at the family and species level over distances of 100-1200 km. However, much of this turnover could be “pseudo-endemism” resulting from undersampling. For some macrofaunal taxa, e.g., the neogastropods, it is argued that the Atlantic abyss contains a non-reproductive “sink” assemblage derived from slope regions. The meiofaunal taxa, including foraminiferans, nematode worms and harpacticoid copepods, are speciose in the abyss. The foraminiferans may have high local diversity but low global diversity, with some species exhibiting bathymetric ranges exceeding 5000 m. The nematodes appear to harbor novel abyssal taxa, but the taxonomy and distribution of this group are too poorly known to draw any biogeographic conclusions. In summary, biogeographic patterns and species ranges in the abyss show substantial variability with body size, life history, and taxonomic identity. Thus, any synthesis of abyssal biogeography, and its application to environmental management, must consider a range of taxa with diverse body sizes and life histories. There are similarities between the abyssal and seamount habitats in patterns of diversity and apparent endemism. Both habitats exhibit (1) high species richness, (2) a long list of rare species, (3) and many species undescribed by taxonomists. Species accumulation curves suggest that many species in any single area remain uncollected. Both habitats exhibit substantial turnover in species lists over small scales (100’s of kilometers). This turnover may reflect actual endemism or sampling artifacts. Because species ranges and levels of endemism are important to prediction of extinction probabilities resulting from mining, modeling studies to assess sampling artifacts in the estimation of endemism are urgently needed. Nature of the abyssal habitat The abyssal seafloor at depths of 3000-6000 m is a vast habitat (Fig. 1), covering approximately 54% of the Earth’s solid surface (Gage and Tyle, 1991). The distribution of this habitat is largely the inverse of the seamounts, consisting of a network of plains punctuated by holes (seamounts) and cracks (mid-ocean ridges and trenches). Abyssal sediments harbor high local biodiversity, with > 100 species each of macrofaunal invertebrates, nematodes worms, harpacticoid copepods, and foraminiferan protozoa in a typical square meter of sediment (Lambshead et al., 2002; Glover et al. 2001; Smith and Demopoulos, 2003; Nozawa et al., submitted; Martinez, personal communication). Enigmatically, the structural complexity of abyssal habitats is very low, especially when 1 compared to other ecosystems characterized by high local diversity, such as tropical rainforests, coral reefs, and some seamounts. Figure 1. Bathymetric map of the ocean floor. The abyss seafloor between 3000 and 6000 m (all the blue except for narrow ocean trenches around ocean margins) covers approximately 54% of the Earth’s surface. Several generalizations can be made about the ecological characteristics of the abyssal habitat, although there clearly are exceptions to all of these generalizations. The habitat consists mostly of plains of fine sediment, and is characterized by low, relatively constant water temperatures between -1 and ~ 2 o C. Most of the abyssal seafloor appears to experience low currents and shows little evidence of sediment erosion; however, some areas (e.g., the seafloor beneath western boundary currents and in the Drake Passage), may experience currents of erosive magnitudes (Hollister and McCave, 1984). Much of the habitat structure of abyss sediments is biogenic, consisting of the tests of giant protozoans (xenophyophores), animal burrows and mounds, feeding traces, and the tracks and trails of mobile megabenthos (Gage and Tyler, 1991; Smith and Demopoulos, 2003. Where hard substrates such as manganese nodules and rock outcrops occur, they appear to support faunal communities distinct from nearby abyssal soft sediments (see reviews in Smith and Demopoulos, 2003; Hannides and Smith, 2004). Abyssal seafloor habitats are often considered to be “food limited” because biotic production depends on the sinking flux of particles from the euphotic zone thousands of meters above. This organic-matter flux is very low, constituting but a few percent of primary production in overlying waters (Smith and Demopoulos, 2003). As a consequence, the biomass, growth rates, reproduction rates and recolonization rates at the abyssal seafloor are typically very low. 2 The fauna of abyssal seafloor habitats is generally poorly sampled and poorly described by taxonomist, with greater than 90% of the polychaete worms, copepods, isopods, and nematodes collected in any given sample typically being new to science. For example, a search of the Ocean Biogeographic Data System reveals less than 20 records at the genus or species level in central equatorial Pacific (Fig. 2). Figure 2. Map of genus and species level records from depths of 3000 – 6000 m in the Ocean Biogeographic Information System (OBIS). What controls biogeographic patterns in the abyss? A number of factors are likely to influence patterns of biogeography and biodiversity at the abyssal seafloor (Hansen, 1975; Rex et al., 2005). (1) Because abyssal habitats are generally very food poor, a major factor is the magnitude of particulate annual organic flux to seafloor, which varies as a function of primary production in the surface ocean. Abyssal habitats underlying upwelling zones along the equator may thus harbor different communities than sediments underlying the oligotrophic central gyres. (2) While the abyssal seafloor generally has low current velocities, current regimes may be much more energetic beneath western boundary currents and beneath the Southern Ocean (Hollister and McCave, 1984). Currents in these regions may resuspend and transport sediments, larvae and adult benthos, dispersing some organisms, and producing inhospitable habitat conditions for others. (3) The availability of hard substrates may also control distribution patterns of benthos, especially because in some regions (e.g., the abyssal equatorial Pacific), hard substrates may be very rare, while in other such as manganese nodule provinces, hard substrates may be very common. (4) Because hydrostatic pressure influences enzyme function and other aspects of organism physiology (Somero, 1992), pressure effects on physiology may well play a role in 3 setting the upper and lower depth limits of abyssal endemics (Somero, 1992). (5) Ocean circulation patterns and seafloor topography also clearly influence biogeographic patterns, isolating some regions of the abyssal seafloor from other regions. (6) Finally, historical events, both geological and oceanographic (e.g., the opening of ocean basins, sea level rise and fall, periods of deep-sea anoxia), have influenced large-scale distribution of patterns of abyssal benthos by controlling the nature and timing of faunal dispersal (e.g., Wilson and Hessler, 1987; Levin et al., 2001; Stuart et el., 2003). Patterns and scales of biogeographic variability in the abyss Large-scale pattern of biodiversity are poorly studied in the abyss, but a few patterns have been documented. In the North Atlantic Ocean, regional species diversity for a variety of taxa in the macrofaunal and megafaunal size classes (0.300 – 20 mm, and > 2 cm in minimum linear dimension, respectively) declines from depths of 3000 to 5000 m (Fig. 3), yielding a diversity maximum in the abyssal zone at its upper limit (3000 m)(Stuart el., 2003). It is not clear whether a similar pattern holds on other ocean basins, and the causes of this pattern remain highly controversial (e.g., Rex et al., 2005). Decreased food availability at abyssal depths is commonly invoked as the ultimate cause of the decrease in diversity in the abyssal North Atlantic (Rex, 2005). Figure 3. Variations in species richness with depth in the Northwest Atlantic. Species richness is estimated for samples of 50 individuals using rarefaction (modified from Rex, 1983). How do the distribution patterns of individual species vary in the abyss; in particular, over what spatial scales do species typically range at the abyssal seafloor? This question is extremely relevant to prediction of extinction
Recommended publications
  • Impact of Large-Scale Natural Physical Disturbance on the Diversity of Deep-Sea North Atlantic Nematodes
    MARINE ECOLOGY PROGRESS SERIES Vol. 214: 121–126, 2001 Published April 26 Mar Ecol Prog Ser Impact of large-scale natural physical disturbance on the diversity of deep-sea North Atlantic nematodes P. J. D. Lambshead1,*, J. Tietjen2, A. Glover1, T. Ferrero1, D. Thistle3, A. J. Gooday4 1Department of Zoology, The Natural History Museum, London SW7 5BD, United Kindom 2Department of Biology, City College of New York, New York, New York 10031 & Division of Invertebrates, American Museum of Natural History, New York, New York 10024, USA 3Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, USA 4Southampton Oceanography Centre, George Deacon Division for Ocean Processes, Empress Dock, Southampton SO14 3ZH, United Kindom ABSTRACT: Nematode alpha diversity from 3 physically disturbed sites in the deep North Atlantic was compared with reference sites. Nematode diversity at the HEBBLE benthic storm site was statis- tically, and significantly, lower than at reference sites. Nematode diversity at the Madeira Abyssal Plain site, which was subject to a turbidite dated at 930 BP, also showed a significantly lower diver- sity than reference sites. However, limited data suggest that diversity was not low at a Venezuela Basin turbidite site. The difference in nematode diversity between the 2 turbidite sites is ascribed to a long term change in sediment conditions at the Madeira site. The Venezuela Basin turbidite site has a sedimentation rate greater than the Maderia site by 1 to 2 orders of magnitude, and this was reflected in the sediment profiles. Another possibility is that the Venezuela Basin turbidite is consid- erably older, by at least 1000 yr, than the Madeira turbidite, allowing more time for recolonisation.
    [Show full text]
  • Inferences on Potential Seamount Locations from Mid-Resolution
    T. Morato and D. Pauly (eds.), Seamounts: Biodiversity and Fisheries, Page 7 INFERENCES ON POTENTIAL SEAMOUNT LOCATIONS FROM MID- RESOLUTION BATHYMETRIC DATA Adrian Kitchingman and Sherman Lai Fisheries Centre, The University of British Columbia. 2259 Lower Mall, Vancouver, B.C., V6T 1Z4, Canada [email protected]; [email protected] ABSTRACT Seamounts are underwater volcanoes that did not grow tall enough to break to the sea surface and turn into islands. Once formed, seamounts tend to gradually sink under their own weight and the subsidence of the lithosphere. The ocean floor is littered with these former seamounts, here called ‘seamounds’. Seamounts occur throughout the world's oceans, but their number (which may surpass 50,000) is difficult to estimate, even roughly, because it depends on the resolution of the bathymetric map used and the specific definition of a seamount used, i.e., the limits used to distinguish between seamounts and seamounds. Here, the locations of a subset of the seamounts of the world were identified using two algorithms relying on the depth differences between adjacent cells of a digital global elevation map distributed by the U.S. National Oceanographic and Atmospheric Agency (NOAA). The overlap of both algorithms resulted in a set of about 14,000 seamounts, but a different number would have been found had we used different thresholds. Known seamount locations supplied by NOAA and SeamountsOnline (http://seamounts.sdsc.edu) were compared against the corresponding seamounts located by the study, which led to some degree of ground-truthing. The coordinates of the seamounts identified in this study are available on the CD-ROM attached to this report, and on http://www.seaaroundus.org.
    [Show full text]
  • Geologists Suggest Horseshoe Abyssal Plain May Be Start of a Subduction Zone 8 May 2019, by Bob Yirka
    Geologists suggest Horseshoe Abyssal Plain may be start of a subduction zone 8 May 2019, by Bob Yirka against one another. Over by the Iberian Peninsula, the opposite appears to be happening—the African and Eurasian plates are pulling apart as the former creeps east toward the Americas. Duarte noted that back in 2012, other researchers conducting seismic wave tests found what appeared to be a dense mass of unknown material beneath the epicenter of the 1969 quake. Some in the field suggested it could be the start of a subduction zone. Then, last year, another team conducted high-resolution imaging of the area and also found evidence of the mass, confirming that it truly existed. Other research has shown that the area just above the mass experiences routine tiny earthquakes. Duarte suggests the evidence to date indicates that the bottom of the plate is peeling away. This could happen, he explained, due to serpentinization in which water percolates through plate fractures and reacts with material beneath the surface, resulting A composite image of the Western hemisphere of the in the formation of soft green minerals. The soft Earth. Credit: NASA mineral layer, he suggests, is peeling away. And if that is the case, then it is likely the area is in the process of creating a subduction zone. He reports that he and his team members built models of their A team of geologists led by João Duarte gave a ideas and that they confirmed what he suspected. presentation at this past month's European The earthquakes were the result of the process of Geosciences Union meeting that included a birthing a new subduction zone.
    [Show full text]
  • Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts)
    Collection Review Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts) Gary C. B. Poore1*, Niel L. Bruce2,3 1 Museum Victoria, Melbourne, Victoria, Australia, 2 Museum of Tropical Queensland and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia, 3 Department of Zoology, University of Johannesburg, Auckland Park, South Africa known from the supralittoral and intertidal to depths in excess of Abstract: The crustacean order Isopoda (excluding six kilometres. Isopods are a highly diverse group of crustaceans, Asellota, crustacean symbionts and freshwater taxa) with more than 10,300 species known to date, approximately comprise 3154 described marine species in 379 genera 6,250 of these being marine or estuarine. In the groups under in 37 families according to the WoRMS catalogue. The discussion here (about half the species) the vast majority of species history of taxonomic discovery over the last two centuries are known from depths of less than 1000 metres. is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet The Isopoda is one of the orders of peracarid crustaceans, that resolved but systematics of the major subordinal taxa is is, those that brood their young in a marsupium under the body. relatively well understood. Isopods range in size from less They are uniquely defined within Peracarida by the combination than 1 mm to Bathynomus giganteus at 365 mm long. of one pair of uropods attached to the pleotelson and pereopods of They inhabit all marine habitats down to 7280 m depth only one branch. Marine isopods are arguably the most but with few doubtful exceptions species have restricted morphologically diverse order of all the Crustacea.
    [Show full text]
  • Changes in Species Composition of Haploniscidae (Crustacea Isopoda)
    Progress in Oceanography 180 (2020) 102233 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Changes in species composition of Haploniscidae (Crustacea: Isopoda) across T potential barriers to dispersal in the Northwest Pacific ⁎ Nele Johannsena,b, Lidia Linsa,b,c, Torben Riehla,b, Angelika Brandta,b, a Goethe University, Biosciences, Institute for Ecology, Evolution und Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany b Senckenberg Research Institute and Natural History Museum, Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany c Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: Speciation processes as drivers of biodiversity in the deep sea are still not fully understood. One potential driver Hadal for species diversification might be allopatry caused by geographical barriers, such as ridges or trenches, or Ecology physiological barriers associated with depth. We analyzed biodiversity and biogeography of 21 morphospecies of Sea of Okhotsk the deep-sea isopod family Haploniscidae to investigate barrier effects to species dispersal in the Kuril- Deep sea Kamchatka Trench (KKT) area in the Northwest (NW) Pacific. Our study is based on 2652 specimens from three Abyssal genera, which were collected during the German-Russian KuramBio I (2012) and II (2016) expeditions as well as Isopoda Kuril Kamchatka Trench the Russian-German SokhoBio (2015) campaign. The sampling area covered two potential geographical barriers Distribution (the Kuril Island archipelago and the Kuril-Kamchatka Trench), as well as three depth zones (bathyal, abyssal, Northwest Pacific hadal). We found significant differences in relative species abundance between abyssal and hadal depths.
    [Show full text]
  • Hydrothermal Vents. Teacher's Notes
    Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
    Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate.
    [Show full text]
  • Deep-Sea Mining: the Basics
    A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining.
    [Show full text]
  • EXPLORING DEEP SEA HYDROTHERMAL VENTS on EARTH and OCEAN WORLDS. P. Sobron1,2, L. M. Barge3, the Invader Team. 1Impossible Sensing, St
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2505.pdf EXPLORING DEEP SEA HYDROTHERMAL VENTS ON EARTH AND OCEAN WORLDS. P. Sobron1,2, L. M. Barge3, the InVADER Team. 1Impossible Sensing, St. Louis, MO ([email protected]) 2SETI Institute, Mtn. View, CA, , 3Jet Propulsion Laboratory, Pasadena, CA The Mission: InVADER (In-situ Vent Analysis precipitates showing exposed minerals and organic Divebot for Exobiology Research, Figure 4.1, content. The UNOLS ROV will use our coring tool and https://invader-mission.org/) is NASA’s most advanced its own manipulator and cameras to take ground truth subsea sensing payload, a tightly integrated imaging and samples as part of the InVADER deplotment. laser Raman spectroscopy/laser-induced breakdown In contrast to existing methods, InVADER allows spectroscopy/laser induced native fluorescence in-situ, autonomous, non-destructive measurements of instrument capable of in-situ, rapid, long-term these vent characteristics. InVADER will fill these gaps, underwater analyses of vent fluid and precipitates. and advance readiness in vent exploration on Earth and Such analyses are critical for finding and studying Ocean Worlds by simplifying operational strategies for life and life’s precursors at vent systems on Ocean identifying and characterizing seafloor environments. Worlds. To demonstrate the scientific potential and We will use statistical analysis tools for the fusion of functionality of the instrument, in July 2021 our team multi-sensor datasets, and develop real-time science will deploy InVADER on the Ocean Observatories data evaluation and payload control routines to Initiative’s (OOI) Regional Cabled Array (RCA), a establish, and then validate, adaptive science operations power/data distribution network off the Oregon coast, at strategies that maximize science return in a mission-like the underwater hydrothermal systems of Axial scenario.
    [Show full text]