“Pseudo-Sciatica” from Superior Cluneal Nerve Entrapment: a Laboratory Investigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simplified Fascial Model of Pelvic Anatomical Surgery: Going Beyond
Anatomical Science International https://doi.org/10.1007/s12565-020-00553-z ORIGINAL ARTICLE A simplifed fascial model of pelvic anatomical surgery: going beyond parametrium‑centered surgical anatomy Stefano Cosma1 · Domenico Ferraioli2 · Marco Mitidieri3 · Marcello Ceccaroni4 · Paolo Zola5 · Leonardo Micheletti1 · Chiara Benedetto1 Received: 13 March 2020 / Accepted: 5 June 2020 © The Author(s) 2020 Abstract The classical surgical anatomy of the female pelvis is limited by its gynecological oncological focus on the parametrium and burdened by its modeling based on personal techniques of diferent surgeons. However, surgical treatment of pelvic diseases, spreading beyond the anatomical area of origin, requires extra-regional procedures and a thorough pelvic anatomical knowl- edge. This study evaluated the feasibility of a comprehensive and simplifed model of pelvic retroperitoneal compartmen- talization, based on anatomical rather than surgical anatomical structures. Such a model aims at providing an easier, holistic approach useful for clinical, surgical and educational purposes. Six fresh-frozen female pelves were macroscopically and systematically dissected. Three superfcial structures, i.e., the obliterated umbilical artery, the ureter and the sacrouterine ligament, were identifed as the landmarks of 3 deeper fascial-ligamentous structures, i.e., the umbilicovesical fascia, the urogenital-hypogastric fascia and the sacropubic ligament. The retroperitoneal areolar tissue was then gently teased away, exposing the compartments delimited by these deep fascial structures. Four compartments were identifed as a result of the intrapelvic development of the umbilicovesical fascia along the obliterated umbilical artery, the urogenital-hypogastric fascia along the mesoureter and the sacropubic ligaments. The retroperitoneal compartments were named: parietal, laterally to the umbilicovesical fascia; vascular, between the two fasciae; neural, medially to the urogenital-hypogastric fascia and visceral between the sacropubic ligaments. -
Anatomical Study of the Superior Cluneal Nerve and Its Estimation of Prevalence As a Cause of Lower Back Pain in a South African Population
Anatomical study of the superior cluneal nerve and its estimation of prevalence as a cause of lower back pain in a South African population by Leigh-Anne Loubser (10150804) Dissertation to be submitted in full fulfilment of the requirements for the degree Master of Science in Anatomy In the Faculty of Health Science University of Pretoria Supervisor: Prof AN Van Schoor1 Co-supervisor: Dr RP Raath2 1 Department of Anatomy, University of Pretoria 2 Netcare Jakaranda Hospital, Pretoria 2017 DECLARATION OF ORIGINALITY UNIVERSITY OF PRETORIA The Department of Anatomy places great emphasis upon integrity and ethical conduct in the preparation of all written work submitted for academic evaluation. While academic staff teach you about referencing techniques and how to avoid plagiarism, you too have a responsibility in this regard. If you are at any stage uncertain as to what is required, you should speak to your lecturer before any written work is submitted. You are guilty of plagiarism if you copy something from another author’s work (e.g. a book, an article, or a website) without acknowledging the source and pass it off as your own. In effect, you are stealing something that belongs to someone else. This is not only the case when you copy work word-for-word (verbatim), but also when you submit someone else’s work in a slightly altered form (paraphrase) or use a line of argument without acknowledging it. You are not allowed to use work previously produced by another student. You are also not allowed to let anybody copy your work with the intention of passing if off as his/her work. -
The Neuroanatomy of Female Pelvic Pain
Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis. -
Curative Efficacy of Low Frequency Electrical Stimulation in Preventing
Li et al. World Journal of Surgical Oncology (2019) 17:141 https://doi.org/10.1186/s12957-019-1689-2 RESEARCH Open Access Curative efficacy of low frequency electrical stimulation in preventing urinary retention after cervical cancer operation Huan Li1,2†, Can-Kun Zhou4†, Jing Song1,2, Wei-Ying Zhang1,2, Su-Mei Wang1,2, Yi-Ling Gu1,2, Kang Wang1,2, Zhe Ma1,2, Yan Hu1,2, Ai-Min Xiao1,2, Jian-Liu Wang3 and Rui-Fang Wu1,2* Abstract Background: To evaluate the clinical significance of low-frequency electrical stimulation in preventing urinary retention after radical hysterectomy. Methods: A total of 91 women with stage IA2–IB2 cervical cancer, who were treated with radical hysterectomy and lymphadenectomy from January 2009 to December 2012, were enrolled into this study and were randomly divided into two groups: trail group (48 cases) and control group (43 cases). Traditional bladder function training and low- frequency electrical stimulation were conducted in the trail group, while patients in the control group were only treated by traditional bladder training. The general condition, rate of urinary retention, and muscle strength grades of pelvic floor muscle in the perioperative period were compared between these two groups. Results: The incidence of postoperative urinary retention in the electrical stimulation group was 10.41%, significantly lower than that in the control group (44.18%), and the difference was statistically significant (P < 0.01). The duration of postoperative fever and use of antibiotics were almost the same between these two groups. Eleven days after surgery, the difference in grades of the pelvic floor muscle between these two groups was not statistically significant. -
Overview of Spinal Nerves
Spinal Nerves Boundless Overview of Spinal Nerves Spinal nerves, a part of the PNS, generally refers to mixed nerves, with motor, sensory, and autonomic signals between the CNS and the body. 1. fig. 1 shows a spinal nerve Spinal nerves arise from a combination of nerve fibers: the dorsal and ventral roots of the spinal cord. Afferent sensory axons, bringing sensory information from the body to the spinal cord and brain, travel through the dorsal roots of the spinal cord, and efferent motor axons, bringing motor information from the brain to the body, travel through the ventral roots of the spinal cord. All spinal nerves except the first pair emerge from the spinal column through an opening between vertebrae, called an intervertebral foramen. The spinal nerves are typically labeled by their location in the body: thoracic, lumbar, or sacral. Dorsal Root: Also known as the posterior root, the afferent sensory root of a spinal nerve. Autonomic: Acting or occurring involuntarily, without conscious control. Intervertebral Foramen: The foramen allows for the passage of the spinal nerve root, dorsal root ganglion, the spinal artery of the segmental artery, communicating veins between the internal and external plexuses, recurrent meningeal (sinu- vertebral) nerves, and transforaminal ligaments. 2. Source URL: https://www.boundless.com/physiology/peripheral-nervous-system-pns/spinal-nerves/ Saylor URL: http://www.saylor.org/courses/psych402/ Attributed to: [Boundless] www.saylor.org Page 1 of 12 fig. 2 shows intervertebral foramina Intervertebral foramina are indicated by arrows. Spinal Nerves The term spinal nerve generally refers to a mixed spinal nerve, which carries motor, sensory, and autonomic signals between the spinal cord and the body. -
The Spinal Cord and Spinal Nerves
14 The Nervous System: The Spinal Cord and Spinal Nerves PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The Central Nervous System (CNS) consists of: • The spinal cord • Integrates and processes information • Can function with the brain • Can function independently of the brain • The brain • Integrates and processes information • Can function with the spinal cord • Can function independently of the spinal cord © 2012 Pearson Education, Inc. Gross Anatomy of the Spinal Cord • Features of the Spinal Cord • 45 cm in length • Passes through the foramen magnum • Extends from the brain to L1 • Consists of: • Cervical region • Thoracic region • Lumbar region • Sacral region • Coccygeal region © 2012 Pearson Education, Inc. Gross Anatomy of the Spinal Cord • Features of the Spinal Cord • Consists of (continued): • Cervical enlargement • Lumbosacral enlargement • Conus medullaris • Cauda equina • Filum terminale: becomes a component of the coccygeal ligament • Posterior and anterior median sulci © 2012 Pearson Education, Inc. Figure 14.1a Gross Anatomy of the Spinal Cord C1 C2 Cervical spinal C3 nerves C4 C5 C 6 Cervical C 7 enlargement C8 T1 T2 T3 T4 T5 T6 T7 Thoracic T8 spinal Posterior nerves T9 median sulcus T10 Lumbosacral T11 enlargement T12 L Conus 1 medullaris L2 Lumbar L3 Inferior spinal tip of nerves spinal cord L4 Cauda equina L5 S1 Sacral spinal S nerves 2 S3 S4 S5 Coccygeal Filum terminale nerve (Co1) (in coccygeal ligament) Superficial anatomy and orientation of the adult spinal cord. The numbers to the left identify the spinal nerves and indicate where the nerve roots leave the vertebral canal. -
An Up-To-Date Overview of Evaluation and Management
Translational Research in Anatomy 11 (2018) 5–9 Contents lists available at ScienceDirect Translational Research in Anatomy journal homepage: www.elsevier.com/locate/tria Ureterosciatic hernia: An up-to-date overview of evaluation and T management ∗ Jason Gandhia,b,c, Min Yea Leea, Gunjan Joshid, Noel L. Smithe, Sardar Ali Khana,f, a Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA b Medical Student Research Institute, St. George's University School of Medicine, West Indies, Grenada c Department of Anatomical Sciences, St. George's University School of Medicine, West Indies, Grenada d Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY, USA e Foley Plaza Medical, New York, NY, USA f Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, USA ARTICLE INFO ABSTRACT Keywords: Ureterosciatic hernia, defined as a suprapiriform or infrapiriform herniation of the pelvic ureter, is the sliding of Ureter the ureters into the pelvic fossa, fovea, or greater or lesser sciatic foramen. This type of hernia is the rarest form Sciatic hernia of pelvic sciatic hernias. It may cause a wide range of cryptic clinical symptoms of pain, obstructive uropathy, Ureteral obstruction sepsis, or renal failure. This condition has been described in terms of involvement in inguinal, femoral, sciatic, Sepsis obturator, and thoracic regions. A high index of clinical suspicion is essential for diagnosis because the hernia Hydronephrosis develops in the pelvic cavity and becomes overlayed by the large gluteal muscle. Since ureterosciatic hernias Renal failure have not been adequately reviewed in the literature due to the limited number of case reports, we aim to aid the clinician's knowledge by discussing the relevant anatomy, classification, clinical symptoms, optional radiology, optional diagnostic instrumentation, and management. -
Achilles Tendon Disorders Sundeep S
EVIDENCE-BASED CLINICAL REVIEW Achilles Tendon Disorders Sundeep S. Saini, DO; Christopher W. Reb, DO; Megan Chapter, DO; and Joseph N. Daniel, DO From the Department of Disorders of the Achilles tendon, the largest tendon in the human body, are Orthopedic Surgery at the common and occur in both active and sedentary persons. A thorough history Rowan University School of Osteopathic Medicine and physical examination allow primary care physicians to make an accurate in Stratford, New Jersey diagnosis and to initiate appropriate management. Mismanaged or neglected (Drs Saini, Reb, and injuries markedly decrease a patient’s quality of life. A growing body of related Chapter), and the Rothman Institute at Jefferson literature is the basis for current therapeutic regimens, which use a multi- Medical College in modal conservative approach, including osteopathic manipulative treatment. Philadelphia, Pennsylvania (Dr Daniel). Although primary care physicians can manage most cases of Achilles tendon disorders, specialty care may be needed in certain instances. Procedural in- Financial Disclosures: None reported. tervention should consider any comorbid conditions in addition to patients’ Support: None reported. lifestyle to help guide decision making. When appropriately managed, Achilles tendon disorders generally carry a favorable prognosis. Address correspondence to Joseph N. Daniel, DO, J Am Osteopath Assoc. 2015;115(11):670-676 The Rothman Institute, doi:10.7556/jaoa.2015.138 Jefferson Medical College, Foot and Ankle Service, 925 Chestnut St, 5th Floor, chilles tendon disorders afflict athletes and sedentary persons alike.1-3 Philadelphia, PA 19107-4206. Among athletes, the lifetime prevalence of acute tendon rupture and chronic tendinopathy are 8.3% and 23.9%, respectively.4 In the general population, E-mail: joe.daniel@ A 4 rothmaninstitute.com these figures are 5.9% and 2.1%, respectively. -
Clinical Policy: Injections and Radiofrequency Neurotomy for Pain Management Reference Number: CP.MP.118 Coding Implications Last Review Date: 04/18 Revision Log
Clinical Policy: Injections and Radiofrequency Neurotomy for Pain Management Reference Number: CP.MP.118 Coding Implications Last Review Date: 04/18 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Invasive pain management procedures considered in this policy include epidural steroid injections/selective nerve root blocks, facet joint diagnostic and therapeutic blocks and radiofrequency ablation, sacroiliac joint injections and radiofrequency ablation, intradiscal steroid injections, trigger point injections, occipital nerve blocks, peripheral nerve blocks and sympathetic blocks. Policy/Criteria It is the policy of health plans affiliated with Centene Corporation® that invasive pain management procedures performed by a physician are medically necessary when the relevant criteria are met and the patient receives only one procedure per visit, with or without radiographic guidance. I. Caudal or Interlaminar Epidural Steroid Injections .............................................................1 II. Selective Nerve Root Blocks ...............................................................................................2 III. Transforaminal Epidural Steroid Injections .........................................................................3 IV. SNRB/TFESI for Acute Pain Management .........................................................................4 V. Facet Joint Interventions ......................................................................................................4 -
Redalyc.Topographic Anatomy of the Spinal Cord and Vertebromedullary
Acta Scientiarum. Biological Sciences ISSN: 1679-9283 [email protected] Universidade Estadual de Maringá Brasil Campos Lima, Fabiano; Quagliatto Santos, André Luiz; Carvalho Lima, Betania; Gonçalves Vieira, Lucélia; Queiroz Luz Hirano, Líria Topographic anatomy of the spinal cord and vertebromedullary relationships in Mazama gouazoubira Fisher, 1814 (Artiodactyla; Cervidae) Acta Scientiarum. Biological Sciences, vol. 32, núm. 2, 2010, pp. 189-194 Universidade Estadual de Maringá .png, Brasil Available in: http://www.redalyc.org/articulo.oa?id=187114387013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DOI: 10.4025/actascibiolsci.v32i2.5061 Topographic anatomy of the spinal cord and vertebromedullary relationships in Mazama gouazoubira Fisher, 1814 (Artiodactyla; Cervidae) Fabiano Campos Lima, André Luiz Quagliatto Santos*, Betania Carvalho Lima, Lucélia Gonçalves Vieira and Líria Queiroz Luz Hirano Laboratório de Pesquisa em Animais Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Amazonas, 2245, 38405-302, Jardim Umuarama, Uberlândia, Minas Gerais, Brazil, *Author for correspondence. E-mail: [email protected] ABTRACT. To gain an understanding of the detailed anatomical aspects of Mazama gouazoubira (brocket deer), this paper describes the relationships between its spinal cord and the vertebral canal, adding information with a clinical and surgical approach. Three specimens of M. gouazoubira were prepared following the methods normally used in anatomy. The epaxial muscles and vertebral arches were removed to expose the spinal cord and the spinal nerve roots. The dimensions of the medullary segments were measured using a pachymeter with 0.05 mm precision. -
Neuroanatomy and Neurophysiology Related to Sexual Dysfunction in Male Neurogenic Patients with Lesions to the Spinal Cord Or Peripheral Nerves
Spinal Cord (2010) 48, 182–191 & 2010 International Spinal Cord Society All rights reserved 1362-4393/10 $32.00 www.nature.com/sc REVIEW Neuroanatomy and neurophysiology related to sexual dysfunction in male neurogenic patients with lesions to the spinal cord or peripheral nerves K Everaert1, WIQ de Waard1, T Van Hoof2, C Kiekens3, T Mulliez1 and C D’herde2 1Department of Urology, Ghent University Hospital, Ghent, Belgium; 2Department of Anatomy, Embryology, Histology and Medical Physics, University of Ghent, Ghent, Belgium and 3Department of Rehabilitation Sciences, Catholic University Leuven, Leuven, Belgium Study design: Review article. Objectives: The neuroanatomy and physiology of psychogenic erection, cholinergic versus adrenergic innervation of emission and the predictability of outcome of vibration and electroejaculation require a review and synthesis. Setting: University Hospital Belgium. Methods: We reviewed the literature with PubMed 1973–2008. Results: Erection, emission and ejaculation are separate phenomena and have different innervations. It is important to realize, which are the afferents and efferents and where the motor neuron of the end organ is located. When interpreting a specific lesion it is important to understand if postsynaptic fibres are intact or not. Afferents of erection, emission and ejaculation are the pudendal nerve and descending pathways from the brain. Erection is cholinergic and NO-mediated. Emission starts cholinergically (as a secretion) and ends sympathetically (as a contraction). Ejaculation is mainly adrenergic and somatic. For vibratory-evoked ejaculation, the reflex arch must be complete; for electroejaculation, the postsynaptic neurons (paravertebral ganglia) must be intact. Conclusion: Afferents of erection, emission and ejaculation are the pudendal nerve and descending pathways from the brain. -
The Spinal Cord and Spinal Reflexes
THE SPINAL CORD AND SPINAL REFLEXES Cross section of the embryonic spinal cord and dorsal root to show the neurogenesis in the ventral horn and dorsal root ganglia THE SYMPATHETIC AND PARASYMPATHETIC NERVOUS SYSTEM INNERVATION OF THE SOMITES, SOMATIC NERVE PLEXUS, DERMATOMES Nerve roots in plexus divide into peripheral nerves having segmental arrangement in the skin (dermatomes). The segments overlap. Transformation of dermatomes during the outgrowth of the limb buds. C- cervical; T-thoracal; L-lumbar; S- sacral. Diagrammatic representation of plexus formation by spinal nerves. (A) Each myotome receives one spinal nerve, but the myotome may split to contribute to a composite muscle. (B) The axons that innervate a composite muscle still reach their original myotome but first run through a plexus to form a common nerve. The segmental innervation of the skin (Duus) Pattern of innervation of skin by peripheral nerves (Duus) Gross components of a prototypical peripheral nerve (thoracic level). Dorsal view of the spinal cord and dorsal nerve roots in situ, after removal of the neural arches of the vertebrae. CSF is obtained by inserting a Needle into the lumbar cistern between the 3rd and 4th or 4th and 5th lumbar spinal processes. Schematic drawings showing the relationship between adult the spinal cord and the vertebral column at various stages of development. The cross-sections of the spinal cord are wider at the level of the cervical and lumbar enlargements than elsewhere. Note that relative amount of gray and white matter is also different at different levels. The amount of white matter decreases gradually in caudal direction, since the long ascending and descending fiber tracts contain fewer axons at successively more caudal levels of the spinal cord.