Integer-Programming Model Is One of the Most Important Models in Management Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reasoning About Equations Using Equality
Mathematics Instructional Plan – Grade 4 Reasoning About Equations Using Equality Strand: Patterns, Functions, Algebra Topic: Using reasoning to assess the equality in closed and open arithmetic equations Primary SOL: 4.16 The student will recognize and demonstrate the meaning of equality in an equation. Related SOL: 4.4a Materials: Partners Explore Equality and Equations activity sheet (attached) Vocabulary equal symbol (=), equality, equation, expression, not equal symbol (≠), number sentence, open number sentence, reasoning Student/Teacher Actions: What should students be doing? What should teachers be doing? 1. Activate students’ prior knowledge about the equal sign. Formally assess what students already know and what misconceptions they have. Ask students to open their notebooks to a clean sheet of paper and draw lines to divide the sheet into thirds as shown below. Create a poster of the same graphic organizer for the room. This activity should take no more than 10 minutes; it is not a teaching opportunity but simply a data- collection activity. Equality and the Equal Sign (=) I know that- I wonder if- I learned that- 1 1 1 a. Let students know they will be creating a graphic organizer about equality and the equal sign; that is, what it means and how it is used. The organizer is to help them keep track of what they know, what they wonder, and what they learn. The “I know that” column is where they can write things they are pretty sure are correct. The “I wonder if” column is where they can write things they have questions about and also where they can put things they think may be true but they are not sure. -
A Branch-And-Price Approach with Milp Formulation to Modularity Density Maximization on Graphs
A BRANCH-AND-PRICE APPROACH WITH MILP FORMULATION TO MODULARITY DENSITY MAXIMIZATION ON GRAPHS KEISUKE SATO Signalling and Transport Information Technology Division, Railway Technical Research Institute. 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan YOICHI IZUNAGA Information Systems Research Division, The Institute of Behavioral Sciences. 2-9 Ichigayahonmura-cho, Shinjyuku-ku, Tokyo 162-0845, Japan Abstract. For clustering of an undirected graph, this paper presents an exact algorithm for the maximization of modularity density, a more complicated criterion to overcome drawbacks of the well-known modularity. The problem can be interpreted as the set-partitioning problem, which reminds us of its integer linear programming (ILP) formulation. We provide a branch-and-price framework for solving this ILP, or column generation combined with branch-and-bound. Above all, we formulate the column gen- eration subproblem to be solved repeatedly as a simpler mixed integer linear programming (MILP) problem. Acceleration tech- niques called the set-packing relaxation and the multiple-cutting- planes-at-a-time combined with the MILP formulation enable us to optimize the modularity density for famous test instances in- cluding ones with over 100 vertices in around four minutes by a PC. Our solution method is deterministic and the computation time is not affected by any stochastic behavior. For one of them, column generation at the root node of the branch-and-bound tree arXiv:1705.02961v3 [cs.SI] 27 Jun 2017 provides a fractional upper bound solution and our algorithm finds an integral optimal solution after branching. E-mail addresses: (Keisuke Sato) [email protected], (Yoichi Izunaga) [email protected]. -
Integer Linear Programs
20 ________________________________________________________________________________________________ Integer Linear Programs Many linear programming problems require certain variables to have whole number, or integer, values. Such a requirement arises naturally when the variables represent enti- ties like packages or people that can not be fractionally divided — at least, not in a mean- ingful way for the situation being modeled. Integer variables also play a role in formulat- ing equation systems that model logical conditions, as we will show later in this chapter. In some situations, the optimization techniques described in previous chapters are suf- ficient to find an integer solution. An integer optimal solution is guaranteed for certain network linear programs, as explained in Section 15.5. Even where there is no guarantee, a linear programming solver may happen to find an integer optimal solution for the par- ticular instances of a model in which you are interested. This happened in the solution of the multicommodity transportation model (Figure 4-1) for the particular data that we specified (Figure 4-2). Even if you do not obtain an integer solution from the solver, chances are good that you’ll get a solution in which most of the variables lie at integer values. Specifically, many solvers are able to return an ‘‘extreme’’ solution in which the number of variables not lying at their bounds is at most the number of constraints. If the bounds are integral, all of the variables at their bounds will have integer values; and if the rest of the data is integral, many of the remaining variables may turn out to be integers, too. -
Revised Primal Simplex Method Katta G
6.1 Revised Primal Simplex method Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor First put LP in standard form. This involves floowing steps. • If a variable has only a lower bound restriction, or only an upper bound restriction, replace it by the corresponding non- negative slack variable. • If a variable has both a lower bound and an upper bound restriction, transform lower bound to zero, and list upper bound restriction as a constraint (for this version of algorithm only. In bounded variable simplex method both lower and upper bound restrictions are treated as restrictions, and not as constraints). • Convert all inequality constraints as equations by introducing appropriate nonnegative slack for each. • If there are any unrestricted variables, eliminate each of them one by one by performing a pivot step. Each of these reduces no. of variables by one, and no. of constraints by one. This 128 is equivalent to having them as permanent basic variables in the tableau. • Write obj. in min form, and introduce it as bottom row of original tableau. • Make all RHS constants in remaining constraints nonnega- tive. 0 Example: Max z = x1 − x2 + x3 + x5 subject to x1 − x2 − x4 − x5 ≥ 2 x2 − x3 + x5 + x6 ≤ 11 x1 + x2 + x3 − x5 =14 −x1 + x4 =6 x1 ≥ 1;x2 ≤ 1; x3;x4 ≥ 0; x5;x6 unrestricted. 129 Revised Primal Simplex Algorithm With Explicit Basis Inverse. INPUT NEEDED: Problem in standard form, original tableau, and a primal feasible basic vector. Original Tableau x1 ::: xj ::: xn −z a11 ::: a1j ::: a1n 0 b1 . am1 ::: amj ::: amn 0 bm c1 ::: cj ::: cn 1 α Initial Setup: Let xB be primal feasible basic vector and Bm×m be associated basis. -
Chapter 6: Gradient-Free Optimization
AA222: MDO 133 Monday 30th April, 2012 at 16:25 Chapter 6 Gradient-Free Optimization 6.1 Introduction Using optimization in the solution of practical applications we often encounter one or more of the following challenges: • non-differentiable functions and/or constraints • disconnected and/or non-convex feasible space • discrete feasible space • mixed variables (discrete, continuous, permutation) • large dimensionality • multiple local minima (multi-modal) • multiple objectives Gradient-based optimizers are efficient at finding local minima for high-dimensional, nonlinearly- constrained, convex problems; however, most gradient-based optimizers have problems dealing with noisy and discontinuous functions, and they are not designed to handle multi-modal problems or discrete and mixed discrete-continuous design variables. Consider, for example, the Griewank function: n n x2 f(x) = P i − Q cos pxi + 1 4000 i i=1 i=1 (6.1) −600 ≤ xi ≤ 600 Mixed (Integer-Continuous) Figure 6.1: Graphs illustrating the various types of functions that are problematic for gradient- based optimization algorithms AA222: MDO 134 Monday 30th April, 2012 at 16:25 Figure 6.2: The Griewank function looks deceptively smooth when plotted in a large domain (left), but when you zoom in, you can see that the design space has multiple local minima (center) although the function is still smooth (right) How we could find the best solution for this example? • Multiple point restarts of gradient (local) based optimizer • Systematically search the design space • Use gradient-free optimizers Many gradient-free methods mimic mechanisms observed in nature or use heuristics. Unlike gradient-based methods in a convex search space, gradient-free methods are not necessarily guar- anteed to find the true global optimal solutions, but they are able to find many good solutions (the mathematician's answer vs. -
Linear Programming Notes X: Integer Programming
Linear Programming Notes X: Integer Programming 1 Introduction By now you are familiar with the standard linear programming problem. The assumption that choice variables are infinitely divisible (can be any real number) is unrealistic in many settings. When we asked how many chairs and tables should the profit-maximizing carpenter make, it did not make sense to come up with an answer like “three and one half chairs.” Maybe the carpenter is talented enough to make half a chair (using half the resources needed to make the entire chair), but probably she wouldn’t be able to sell half a chair for half the price of a whole chair. So, sometimes it makes sense to add to a problem the additional constraint that some (or all) of the variables must take on integer values. This leads to the basic formulation. Given c = (c1, . , cn), b = (b1, . , bm), A a matrix with m rows and n columns (and entry aij in row i and column j), and I a subset of {1, . , n}, find x = (x1, . , xn) max c · x subject to Ax ≤ b, x ≥ 0, xj is an integer whenever j ∈ I. (1) What is new? The set I and the constraint that xj is an integer when j ∈ I. Everything else is like a standard linear programming problem. I is the set of components of x that must take on integer values. If I is empty, then the integer programming problem is a linear programming problem. If I is not empty but does not include all of {1, . , n}, then sometimes the problem is called a mixed integer programming problem. -
Heuristic Search Viewed As Path Finding in a Graph
ARTIFICIAL INTELLIGENCE 193 Heuristic Search Viewed as Path Finding in a Graph Ira Pohl IBM Thomas J. Watson Research Center, Yorktown Heights, New York Recommended by E. J. Sandewall ABSTRACT This paper presents a particular model of heuristic search as a path-finding problem in a directed graph. A class of graph-searching procedures is described which uses a heuristic function to guide search. Heuristic functions are estimates of the number of edges that remain to be traversed in reaching a goal node. A number of theoretical results for this model, and the intuition for these results, are presented. They relate the e])~ciency of search to the accuracy of the heuristic function. The results also explore efficiency as a consequence of the reliance or weight placed on the heuristics used. I. Introduction Heuristic search has been one of the important ideas to grow out of artificial intelligence research. It is an ill-defined concept, and has been used as an umbrella for many computational techniques which are hard to classify or analyze. This is beneficial in that it leaves the imagination unfettered to try any technique that works on a complex problem. However, leaving the con. cept vague has meant that the same ideas are rediscovered, often cloaked in other terminology rather than abstracting their essence and understanding the procedure more deeply. Often, analytical results lead to more emcient procedures. Such has been the case in sorting [I] and matrix multiplication [2], and the same is hoped for this development of heuristic search. This paper attempts to present an overview of recent developments in formally characterizing heuristic search. -
Integer Linear Programming
Introduction Linear Programming Integer Programming Integer Linear Programming Subhas C. Nandy ([email protected]) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Introduction Linear Programming Integer Programming Organization 1 Introduction 2 Linear Programming 3 Integer Programming Introduction Linear Programming Integer Programming Linear Programming A technique for optimizing a linear objective function, subject to a set of linear equality and linear inequality constraints. Mathematically, maximize c1x1 + c2x2 + ::: + cnxn Subject to: a11x1 + a12x2 + ::: + a1nxn b1 ≤ a21x1 + a22x2 + ::: + a2nxn b2 : ≤ : am1x1 + am2x2 + ::: + amnxn bm ≤ xi 0 for all i = 1; 2;:::; n. ≥ Introduction Linear Programming Integer Programming Linear Programming In matrix notation, maximize C T X Subject to: AX B X ≤0 where C is a n≥ 1 vector |- cost vector, A is a m× n matrix |- coefficient matrix, B is a m × 1 vector |- requirement vector, and X is an n× 1 vector of unknowns. × He developed it during World War II as a way to plan expenditures and returns so as to reduce costs to the army and increase losses incurred by the enemy. The method was kept secret until 1947 when George B. Dantzig published the simplex method and John von Neumann developed the theory of duality as a linear optimization solution. Dantzig's original example was to find the best assignment of 70 people to 70 jobs subject to constraints. The computing power required to test all the permutations to select the best assignment is vast. However, the theory behind linear programming drastically reduces the number of feasible solutions that must be checked for optimality. -
Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded)
Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first search Breadth-first search, depth- first search and uniform- cost search are special cases of best- first search. A* is a special case of uniform-cost search. ECE457A, Dr. Allaa Hilal, Spring 2017 2 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first F • Breadth- first search is a special case of Uniform- search cost search when all step costs are equal. Breadth-first search, depth- first search and uniform- T • Breadth-first search is best-first search with f(n) = cost search are special cases of best- first search. depth(n); • depth-first search is best-first search with f(n) = - depth(n); • uniform-cost search is best-first search with • f(n) = g(n). A* is a special case of uniform-cost search. F • Uniform-cost search is A* search with h(n) = 0. ECE457A, Dr. Allaa Hilal, Spring 2017 3 Informed Search Strategies Hill Climbing Search ECE457A, Dr. Allaa Hilal, Spring 2017 4 Hill Climbing Search • Tries to improve the efficiency of depth-first. • Informed depth-first algorithm. • An iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution. • It sorts the successors of a node (according to their heuristic values) before adding them to the list to be expanded. -
The Simplex Algorithm in Dimension Three1
The Simplex Algorithm in Dimension Three1 Volker Kaibel2 Rafael Mechtel3 Micha Sharir4 G¨unter M. Ziegler3 Abstract We investigate the worst-case behavior of the simplex algorithm on linear pro- grams with 3 variables, that is, on 3-dimensional simple polytopes. Among the pivot rules that we consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated analysis. All other rules turn out to be much easier to study, but also produce worse results: Most of them show essentially worst-possible behavior; this includes both Kalai’s “random-facet” rule, which is known to be subexponential without dimension restriction, as well as Zadeh’s de- terministic history-dependent rule, for which no non-polynomial instances in general dimensions have been found so far. 1 Introduction The simplex algorithm is a fascinating method for at least three reasons: For computa- tional purposes it is still the most efficient general tool for solving linear programs, from a complexity point of view it is the most promising candidate for a strongly polynomial time linear programming algorithm, and last but not least, geometers are pleased by its inherent use of the structure of convex polytopes. The essence of the method can be described geometrically: Given a convex polytope P by means of inequalities, a linear functional ϕ “in general position,” and some vertex vstart, 1Work on this paper by Micha Sharir was supported by NSF Grants CCR-97-32101 and CCR-00- 98246, by a grant from the U.S.-Israeli Binational Science Foundation, by a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. -
Backtracking / Branch-And-Bound
Backtracking / Branch-and-Bound Optimisation problems are problems that have several valid solutions; the challenge is to find an optimal solution. How optimal is defined, depends on the particular problem. Examples of optimisation problems are: Traveling Salesman Problem (TSP). We are given a set of n cities, with the distances between all cities. A traveling salesman, who is currently staying in one of the cities, wants to visit all other cities and then return to his starting point, and he is wondering how to do this. Any tour of all cities would be a valid solution to his problem, but our traveling salesman does not want to waste time: he wants to find a tour that visits all cities and has the smallest possible length of all such tours. So in this case, optimal means: having the smallest possible length. 1-Dimensional Clustering. We are given a sorted list x1; : : : ; xn of n numbers, and an integer k between 1 and n. The problem is to divide the numbers into k subsets of consecutive numbers (clusters) in the best possible way. A valid solution is now a division into k clusters, and an optimal solution is one that has the nicest clusters. We will define this problem more precisely later. Set Partition. We are given a set V of n objects, each having a certain cost, and we want to divide these objects among two people in the fairest possible way. In other words, we are looking for a subdivision of V into two subsets V1 and V2 such that X X cost(v) − cost(v) v2V1 v2V2 is as small as possible. -
Polynomials with Multiple Zeros and Solvable Dynamical Systems Including Models in the Plane with Polynomial Interactions
462PolsWithMultiplZerosAndSolvDynSyst181216Rev Polynomials with Multiple Zeros and Solvable Dynamical Systems including Models in the Plane with Polynomial Interactions Francesco Calogeroa,b,1 and Farrin Payandeha,c,2 a Physics Department, University of Rome ”La Sapienza”, Rome, Italy b INFN, Sezione di Roma 1 c Department of Physics, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran 1 [email protected], [email protected] 2 f [email protected], [email protected] Abstract The interplay among the time-evolution of the coefficients ym (t) and the zeros xn (t) of a generic time-dependent (monic) polynomial provides a conve- nient tool to identify certain classes of solvable dynamical systems. Recently this tool has been extended to the case of nongeneric polynomials characterized by the presence, for all time, of a single double zero; and subsequently signifi- cant progress has been made to extend this finding to the case of polynomials featuring a single zero of arbitrary multiplicity. In this paper we introduce an approach suitable to deal with the most general case, i. e. that of a nongeneric time-dependent polynomial with an arbitrary number of zeros each of which features, for all time, an arbitrary (time-independent) multiplicity. We then focus on the special case of a polynomial of degree 4 featuring only 2 different zeros and, by using a recently introduced additional twist of this approach, we thereby identify many new classes of solvable dynamical systems of the following type: (n) arXiv:1904.00496v1 [math-ph] 31 Mar 2019 x˙ n = P (x1, x2) , n =1, 2 , (n) with P (x1, x2) two polynomials in the two variables x1 (t) and x2 (t).