A Well-Preserved Ground Sloth (Megalonyx) Cranium from Turin, Monona County, Iowa

Total Page:16

File Type:pdf, Size:1020Kb

A Well-Preserved Ground Sloth (Megalonyx) Cranium from Turin, Monona County, Iowa Proceedings of the Iowa Academy of Science Volume 90 Number Article 6 1983 A Well-Preserved Ground Sloth (Megalonyx) Cranium from Turin, Monona County, Iowa H. Gregory McDonald Idaho State University Duane C. Anderson University of Iowa Let us know how access to this document benefits ouy Copyright ©1983 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation McDonald, H. Gregory and Anderson, Duane C. (1983) "A Well-Preserved Ground Sloth (Megalonyx) Cranium from Turin, Monona County, Iowa," Proceedings of the Iowa Academy of Science, 90(4), 134-140. Available at: https://scholarworks.uni.edu/pias/vol90/iss4/6 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. McDonald and Anderson: A Well-Preserved Ground Sloth (Megalonyx) Cranium from Turin, Mon Proc. Iowa Acad. Sci. 90(4): 134-140. 1983 A Well-Preserved Ground Sloth (Mega/onyx) Cranium from Turin, Monona County, Iowa H. GREGORY McDONALD 1 Idaho Museum of Natural History, Idaho State University, Pocatello, Idaho 83209 DUANE C. ANDERSON State Archaeologist, Univeristy of Iowa, Iowa City, Iowa 52242 A well-preserved cranium of a large Pleistocene ground sloth (Mega/onyx jeffersonii) is described in detail and compared with six other North American Mega/onyx crania. Although the morphology of the Iowa specimen compares favorably with all others, the descending flange of the zygomatic arch is unusual in that it is sharply deflected to the posterior. This suggests a more horizontal component to the masseter. Two new and six previous Iowa records of Mega/onyx in Iowa are reported or reexamined. INDEX DESCRIPTORS: Ground sloth, Xenarthra, Me[!,alonyx, Turin local fauna, Pleistocene, Monona Co., Iowa. In April, 1973, five amateur paleontologists uncovered a fragile a sizeable fauna! assemblage over the last 30 years. A study of the but nearly complete cranium of a large Pleistocene ground sloth Turin local fauna is currently in preparation by W. D. Frankforter and (Mega/onyx jeffersonii) in the gravel pit at Turin, Iowa (Fig. 1). The H. A. Semken. A partial fauna] list includes opossum, mastodon, specimen (Fig. 2) was carefully collected, transported to the Sanford mammoth, rabbit, pocket gopher, muskrat, giant beaver, beaver, Museum in Cherokee, and subsequently added to the museum's raccoon, bear, dire wolf, lion, muskox, and camel. collections (SM 21-73-Z). The junior author, then director of the The geological age of the Turin gravels is uncertain. Hay ( 1914) Sanford Museum, made a preliminary identification which was considers most of the gravels along the Missouri River to be Aftonian, confirmed by Holmes A. Semken, Department of Geology, Universi­ but Frankforter ( 1971) suggests late Kansan to early Illinoian age. ty of Iowa. The discovery received cohsiderable attention in the More recently, Semken (personal communication, Feb. 15, 1982) popular press (Des Moines Register, May 3, 1973) at that time. Casts of places the deposit late in the Pleistocene, noting that the fauna closely the specimen (SUI 38,929) were made at the University of Iowa resembles those of Rancho La Brean age. Museum of Natural History (Schrimper, 1973) and the original was returned to the Sanford Museum for display. This report describes the DESCRIPTION AND COMPARISON OF THE SKULL specimen and its geological context, and compares it with skulls of Mega/onyx from California, Idaho, Kansas, Mississippi, Oklahoma The skull (Fig. 2, Table 1) is incomplete, lacking the anterior and and Texas. palatal portion of the right maxilla and most of the left, except for the Records of Mega/onyx in the state are scanty and no new specimens base of the alveoli. No teeth are preserved and the cranium lacks both have been reported in the Iowa literature since Delevan ( 1926). Except the anterior tip of the right nasal and the right zygomatic arch. There for a few isolated teeth all previous discoveries have been post-cranial is some post-mortem abrasion of the left glenoid fossa and both material. The recovery of the Turin skull therefore is a ma1or occipital condyles but the rest of the skull, including muscle scars, is contribution to our knowledge of variation within the genus superbly preserved. The skull is of an old adult with all sutures Mega/onyx. obliterated except for the posterior portion of the temporo-parietal. Large clefts or fissures are present in the sagittal and supraoccipital crests, but these are not true sutures (discussed below). THE TURIN GRAVEL PIT The dorsal profile of the skull in lateral view (Fig. 2a) shows the nasal region to be lower than the level of the braincase. This The community of Turin is located in the Loess Hills landform configuration is similar to that seen in Leidy's Dickeson skull, ANSP region (Prior, 1973: 32-35) near the confluence of the Maple and 12473, (Leidy, 1855:pl. 4) from Natchez, Mississippi. This feature Little Sioux rivers in the central portion of Monona County (Fig. 3). also is present in the type specimens of Mega/onyx brachycephalus from The town is built on Wisconsinan Loess. The loess overlies a Texas, M. milleri from California and M. hoiani from Oklahoma. In Sangamonian soil developed in Pre-Wisconsinan colluvium derived other skulls of Mega/onyx the nasal region is either at the same level or from both Pre-Wisconsinan till and Loveland Loess. The coiluvium in is dorsal to the braincase. Examination of a series of Mega/onyx skulls turn buries the gravels in which the Turin sloth skull was found (E. A. indicates that the formation of a "forehead" is related to the degree of Bettis, personal communication, May 3, 1982). Hay (1914) referred development of the sagittal crest. to the Turin locality as the Old Elliott pit. The temporal fossa qf the Mega/onyx skull is a well defined feature. The loess deposits at Turin are famous for the so-called Turin Man Its dorsal boundary is a parasagittal crest which extends along the discoveries which consist of four human skeletons of Archaic cultural interparietal suture from the supraoccipital anteriorly until it crosses affiliation (Frankforter and Agogino, 1959). The gravel ·pit, which is the frontoparietal suture. Just anterior to this suture, each parasagittal in the center of town, has been quarried intermittently for many years. crest diverges laterally to form a supra-orbital crest which terminates Frequent collecting trips to the site by the Sanford Museum and the at the post-orbital process. The posterior boundary of the temporal Northwest Chapter of the Iowa Archeological Society, have produced fossa is the parieto-occipital suture. In juvenile and some adult specimens the interparietal suture is closed and usually obliterated by 1 Present address: Vertebrate Paleontology Department, Royal Ontario Museum, the two parasagittal crests which remain separate. Even juveniles in Toronto, Canada M5S 2C6 which the other cranial sutures are open or at least visible have fused Published by UNI ScholarWorks, 1983 1 Proceedings of the Iowa Academy of Science, Vol. 90 [1983], No. 4, Art. 6 A WELL-PRESERVED GROUND SLOTH 135 Fig. l. Aerial view of the Turin gravel pit showing the approximate place (star) where the Mega/onyx skull was recovered in April, 1973. and barely visible interparieral and parieto-occipiral sutures. The and squamosal in the Turin specimen is only barely discernable. It is sagittal crest and its medial fissure is therefore a secondary feature indicated by a bulge on the lateral surface of the arch just ventral to the resulting from enlargement and joining of the parasagitral crests. It is frontal process of the jugal. There is a concavity in the same position the dorsal and medial growth of these crests which forms the fissure Or on the medial side. cleft seen in the Turin specimen. This fissure extends into the One of the unique features of the ground sloth zygomatic arch is the supraoccipiral crest as well (Fig. 2c). The formation of the fissure in large descending flange or process (Fig. 2a), a ventral continuation of the supraoccipiral crest is the result of a dorsal enlargement of the the base of the jugal. This descending flange is present only in two posterior edge of the parietal and the dorsal edge of the supraoccipital. other groups of mammals, g lyptodonts and entelodonts. The ventral In older animals the fissures between both crests eventually fi ll in, extension of the jugal affects the origin of the masseters and hence the forming a solid structure. Filling is underway in the anterior portion way the animal chewed. of the sagittal crest on the Turin specimen just before it bifurcates ro The morphology of the zygomatic arch of the Turin specimen is form the supraorbi cal crests. unusual compared to other specimens of Megalonyz. In nine of the ten The pattern of growth of the sagitral and supraoccipital crests after specimens of Megalonzx with preserved zygomatic arches, the de­ the initial closure of the sutures is not unique ro Mega/onyx. Davis scending flange slopes slightly posteriorly and rapers ro a round trip. ( 1964) described a similar occurrence in the giant panda, Ailuropoda. Additionall y, some specimens have an extra ridge on the posterior Like Mega/onyx, Ailuropoda is herbivorous. Whether or not this edge of the flange representing part of the muscle scar of the pattern occurs in carnivorous mammals with sagittal crests is not superficial masseter. In marked contrast to the nine other individuals, known. the Turin descending flange does not taper but is both blunt and In the earliest known sloths a gap exists between the jugal and the squared off.
Recommended publications
  • Ancient Mitogenomes Shed Light on the Evolutionary History And
    Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, Paul Szpak, Jorge Martinez, Jim Mead, H. Gregory Mcdonald, Ross Macphee, et al. To cite this version: Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, et al.. Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths. Current Biology - CB, Elsevier, 2019. hal-02326384 HAL Id: hal-02326384 https://hal.archives-ouvertes.fr/hal-02326384 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ancient Mitogenomes Shed Light on the Evolutionary 2 History and Biogeography of Sloths 3 Frédéric Delsuc,1,13,*, Melanie Kuch,2 Gillian C. Gibb,1,3, Emil Karpinski,2,4 Dirk 4 Hackenberger,2 Paul Szpak,5 Jorge G. Martínez,6 Jim I. Mead,7,8 H. Gregory 5 McDonald,9 Ross D. E. MacPhee,10 Guillaume Billet,11 Lionel Hautier,1,12 and 6 Hendrik N. Poinar2,* 7 Author list footnotes 8 1Institut des Sciences de l’Evolution de Montpellier
    [Show full text]
  • Geology and Soils
    4.7 GEOLOGY AND SOILS This section contains an analysis of the impacts the 2030 General Plan geology, soils, mineral resources, and paleontological resources in the City of Live Oak. The section provides a description of existing soil, geologic and seismic conditions, as well as a brief analysis of regulations and plans pertinent to the implementation of the 2030 General Plan. 4.7.1 REGULATORY FRAMEWORK FEDERAL PLANS, POLICIES, REGULATIONS, AND LAWS The U. S. Department of Agriculture Natural Resources Conservation Service (NRCS) produces soil surveys that assist planners in determining which land uses are suitable for specific soil types and locations. STATE PLANS, POLICIES, REGULATIONS, AND LAWS The California Geological Survey (CGS) provides information pertaining to soils, geology, mineral resources, and geologic hazards. Mineral Resource Protection Laws CGS maintains and provides information about California’s nonfuel mineral resources. CGS offers information about handling hazardous minerals and SMARA mineral land classifications. Surface Mining and Reclamation Act of 1975 SMARA requires all jurisdictions to incorporate mapped mineral resources designations approved by the California Mining and Geology Board within their general plans. SMARA was enacted to limit new development in areas with significant mineral deposits. The California Department of Conservation’s Office of Mine Reclamation and the California Mining and Geology Board are jointly charged with ensuring proper administration of the act’s requirements. The California Mining and Geology Board promulgates regulations to clarify and interpret the act’s provisions, and also serves as a policy and appeals board. The Office of Mine Reclamation (OMR) provides an ongoing technical assistance program for lead agencies and operators, maintains a database of mine locations and operational information statewide, and is responsible for compliance-related matters (OMR 2008).
    [Show full text]
  • Place Names Describing Fossils in Oral Traditions
    Place names describing fossils in oral traditions ADRIENNE MAYOR Classics Department, Stanford University, Stanford CA 94305 (e-mail: [email protected]) Abstract: Folk explanations of notable geological features, including fossils, are found around the world. Observations of fossil exposures (bones, footprints, etc.) led to place names for rivers, mountains, valleys, mounds, caves, springs, tracks, and other geological and palaeonto- logical sites. Some names describe prehistoric remains and/or refer to traditional interpretations of fossils. This paper presents case studies of fossil-related place names in ancient and modern Europe and China, and Native American examples in Canada, the United States, and Mexico. Evidence for the earliest known fossil-related place names comes from ancient Greco-Roman and Chinese literature. The earliest documented fossil-related place name in the New World was preserved in a written text by the Spanish in the sixteenth century. In many instances, fossil geonames are purely descriptive; in others, however, the mythology about a specific fossil locality survives along with the name; in still other cases the geomythology is suggested by recorded traditions about similar palaeontological phenomena. The antiquity and continuity of some fossil-related place names shows that people had observed and speculated about miner- alized traces of extinct life forms long before modern scientific investigations. Traditional place names can reveal heretofore unknown geomyths as well as new geologically-important sites. Traditional folk names for geological features in the Named fossil sites in classical antiquity landscape commonly refer to mythological or and modern Greece legendary stories that accounted for them (Vitaliano 1973). Landmarks notable for conspicuous fossils Evidence for the practice of naming specific fossil have been named descriptively or mythologically locales can be found in classical antiquity.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Taphonomy and Significance of Jefferson's Ground Sloth (Xenarthra: Megalonychidae) from Utah
    Western North American Naturalist Volume 61 Number 1 Article 9 1-29-2001 Taphonomy and significance of Jefferson's ground sloth (Xenarthra: Megalonychidae) from Utah H. Gregory McDonald Hagerman Fossil Beds National Monument, Hagerman, Idaho Wade E. Miller Thomas H. Morris Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation McDonald, H. Gregory; Miller, Wade E.; and Morris, Thomas H. (2001) "Taphonomy and significance of Jefferson's ground sloth (Xenarthra: Megalonychidae) from Utah," Western North American Naturalist: Vol. 61 : No. 1 , Article 9. Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss1/9 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 61(1), © 2001, pp. 64–77 TAPHONOMY AND SIGNIFICANCE OF JEFFERSON’S GROUND SLOTH (XENARTHRA: MEGALONYCHIDAE) FROM UTAH H. Gregory McDonald1, Wade E. Miller2, and Thomas H. Morris2 ABSTRACT.—While a variety of mammalian megafauna have been recovered from sediments associated with Lake Bonneville, Utah, sloths have been notably rare. Three species of ground sloth, Megalonyx jeffersonii, Paramylodon har- lani, and Nothrotheriops shastensis, are known from the western United States during the Pleistocene. Yet all 3 are rare in the Great Basin, and the few existing records are from localities on the basin margin. The recent discovery of a partial skeleton of Megalonyx jeffersonii at Point-of-the-Mountain, Salt Lake County, Utah, fits this pattern and adds to our understanding of the distribution and ecology of this extinct species.
    [Show full text]
  • The Cave at the End of the World
    CHAPTER 1 The Cave at the End of the World Cueva del Medio and the Early Colonization of Southern South America Fabiana M. Martin, Dominique Todisco, Joel Rodet, Francisco J. Prevosti, Manuel San Román, Flavia Morello, Charles Stern, and Luis A. Borrero The early history of the human exploration and the chronological range of herbivore remains colonization of Fuego-Patagonia is based on evi- recovered by Nami, dictated a taphonomic ap- dence obtained from four diferent and widely proach. Accordingly, we discuss the diferent separated regions: the Central Plateau (Miotti agents involved in the accumulation of the bone 1998), the Pali Aike Lava Field (Bird 1988), Ul- assemblages at the end of the Pleistocene. This tima Esperanza (Nami 1987; Prieto 1991; Jackson presentation will focus on geoarchaeological and Prieto 2005), and northern Tierra del Fuego and chronological issues, with an emphasis on (Massone 2004). In this chapter we will review Nami’s distinction of two early archaeological the data from one of the sites that produced cru- components. The existence of a Late Holocene cial evidence for our understanding of this pro- component is also relevant. Finally, the archaeo- cess: Cueva del Medio. This is a large exogenous logical evidence will be evaluated and compared cave located in Ultima Esperanza, Chile, at the with nearby sites. Cerro Benítez (51°34.209 S, 72°36.161 W), ori- The presence of carnivore and herbivore re- ented toward the southwest (Figure 1.1). Cueva mains not associated with the human occupa- del Milodón and several other caves and rock- tions (Nami 1987, 1993, 1994a; Prieto et al.
    [Show full text]
  • (Mylodon Darwinii) Using Mitogenomic and Nuclear Exon Data
    Resolving the phylogenetic position of Darwin’s extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data Frédéric Delsuc, Melanie Kuch, Gillian C. Gibb, Jonathan Hughes, Paul Szpak, John Southon, Jacob Enk, Ana T. Duggan, and Hendrik N. Poinar Supplementary Material Table S1: Taxon sampling and sequence accession numbers. Table S2: Detailed results of the PartitionFinder analysis for the mitogenomic dataset. Table S3: Detailed results of the PartitionFinder analysis for the nuclear dataset. Table S4: Detailed comparisons between our Mylodon mitogenome and the one produced by Slater et al. (2016). Figure S1: mapDamage DNA fragmentation and nucleotide mis-incorporation plots. Figure S2: mapDamage DNA fragment length distributions. Figure S3: Bayesian mitogenomic tree under the CAT-GTR+G4 mixture model (PhyloBayes). Figure S4: Bayesian mitogenomic tree under a mixed model (MrBayes). Figure S5: Maximum likelihood mitogenomic tree under a GTR+G+I mixed model (RAxML). Figure S6: Bayesian nuclear tree under the CAT-GTR+G4 mixture model (PhyloBayes). Figure S7: Bayesian nuclear tree under a mixed model (MrBayes). Figure S8: Maximum likelihood nuclear tree under a GTR+G mixed model (RAxML). Figure S9: Bayesian mitogenomic chronogram under the CAT-GTR+G4 mixture model and an autocorrelated lognormal model of clock relaxation (PhyloBayes). Figure S10: Bayesian nuclear chronogram under the CAT-GTR+G4 mixture model and an autocorrelated lognormal model of clock relaxation (PhyloBayes). Figure S11: Comparison of the two Mylodon mitogenomes aligned with the Choloepus didactylus reference mitogenome. Figure S12: Maximum likelihood tree of sloth mitogenomes under a single GTR+G model (RAxML). Table S1. Detailed taxonomic sampling and corresponding sequence accession numbers of the mitochondrial and nuclear datasets.
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • Redalyc.VERTEBRATE PALEONTOLOGY in CENTRAL
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Lucas, Spencer G. VERTEBRATE PALEONTOLOGY IN CENTRAL AMERICA: 30 YEARS OF PROGRESS Revista Geológica de América Central, , 2014, pp. 139-155 Universidad de Costa Rica San José, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=45433963013 Revista Geológica de América Central, ISSN (Printed Version): 0256-7024 [email protected] Universidad de Costa Rica Costa Rica How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Revista Geológica de América Central, Número Especial 2014: 30 Aniversario: 139-155, 2014 DOI: 10.15517/rgac.v0i0.16576 ISSN: 0256-7024 VERTEBRATE PALEONTOLOGY IN CENTRAL AMERICA: 30 YEARS OF PROGRESS PALEONTOLOGÍA DE VERTEBRADOS EN AMÉRICA CENTRAL: 30 AÑOS DE PROGRESO Spencer G. Lucas New Mexico Museum of Natural History and Science, 1801 Mountain Road N. W., Albuquerque, New Mexico 87104 USA [email protected] (Recibido: 7/08/2014; aceptado: 10/10/2014) ABSTRACT: Vertebrate paleontology began in Central America in 1858 with the first published records, but the last 30 years have seen remarkable advances. These advances range from new localities, to new taxa to new analyses of diverse data. Central American vertebrate fossils represent all of the major taxonomic groups of vertebrates—fishes, amphibians, reptiles (especially turtles), birds and mammals (mostly xenarthrans, carnivores and ungulates)—but co- verage is very uneven, with many groups (especially small vertebrates) poorly represented. The vertebrate fossils of Central America have long played an important role in understanding the great American biotic interchange.
    [Show full text]
  • Southern Exposures
    Searching for the Pliocene: Southern Exposures Robert E. Reynolds, editor California State University Desert Studies Center The 2012 Desert Research Symposium April 2012 Table of contents Searching for the Pliocene: Field trip guide to the southern exposures Field trip day 1 ���������������������������������������������������������������������������������������������������������������������������������������������� 5 Robert E. Reynolds, editor Field trip day 2 �������������������������������������������������������������������������������������������������������������������������������������������� 19 George T. Jefferson, David Lynch, L. K. Murray, and R. E. Reynolds Basin thickness variations at the junction of the Eastern California Shear Zone and the San Bernardino Mountains, California: how thick could the Pliocene section be? ��������������������������������������������������������������� 31 Victoria Langenheim, Tammy L. Surko, Phillip A. Armstrong, Jonathan C. Matti The morphology and anatomy of a Miocene long-runout landslide, Old Dad Mountain, California: implications for rock avalanche mechanics �������������������������������������������������������������������������������������������������� 38 Kim M. Bishop The discovery of the California Blue Mine ��������������������������������������������������������������������������������������������������� 44 Rick Kennedy Geomorphic evolution of the Morongo Valley, California ���������������������������������������������������������������������������� 45 Frank Jordan, Jr. New records
    [Show full text]
  • Palaeoproteomics Resolves Sloth Relationships
    ARTICLES https://doi.org/10.1038/s41559-019-0909-z Palaeoproteomics resolves sloth relationships Samantha Presslee1,2,3,24, Graham J. Slater4,24, François Pujos5, Analía M. Forasiepi5, Roman Fischer 6, Kelly Molloy7, Meaghan Mackie3,8, Jesper V. Olsen 8, Alejandro Kramarz9, Matías Taglioretti10, Fernando Scaglia10, Maximiliano Lezcano11, José Luis Lanata 11, John Southon12, Robert Feranec13, Jonathan Bloch14, Adam Hajduk15, Fabiana M. Martin16, Rodolfo Salas Gismondi 17, Marcelo Reguero18, Christian de Muizon19, Alex Greenwood20,21, Brian T. Chait 7, Kirsty Penkman22, Matthew Collins3,23 and Ross D. E. MacPhee2* The living tree sloths Choloepus and Bradypus are the only remaining members of Folivora, a major xenarthran radiation that occupied a wide range of habitats in many parts of the western hemisphere during the Cenozoic, including both continents and the West Indies. Ancient DNA evidence has played only a minor role in folivoran systematics, as most sloths lived in places not conducive to genomic preservation. Here we utilize collagen sequence information, both separately and in combination with published mitochondrial DNA evidence, to assess the relationships of tree sloths and their extinct relatives. Results from phylo- genetic analysis of these datasets differ substantially from morphology-based concepts: Choloepus groups with Mylodontidae, not Megalonychidae; Bradypus and Megalonyx pair together as megatherioids, while monophyletic Antillean sloths may be sister to all other folivorans. Divergence estimates are consistent with fossil evidence for mid-Cenozoic presence of sloths in the West Indies and an early Miocene radiation in South America. he sloths (Xenarthra, Folivora), nowadays a taxonomically consensus8–10,16,17 in morphology-based phylogenetic treatments is narrow (six species in two genera) component of the fauna of to place the three-toed sloth as sister to all other folivorans (Fig.
    [Show full text]
  • Mammalia, Xenarthra, Phyllophaga)
    Palaeontologia Electronica palaeo-electronica.org Dimorphism in Quaternary Scelidotheriinae (Mammalia, Xenarthra, Phyllophaga) Ángel R. Miño-Boilini and Alfredo E. Zurita ABSTRACT The contributions concerning possible cases of sexual dimorphisms in fossil and living sloths are scarce. Until now, studies in fossil ground sloth sexual dimorphism have been limited to the subfamilies Megatheriinae (Eremotherium) and Mylodontinae (Paramylodon) from the Pliocene and Pleistocene of South America and North Amer- ica. Scelidotheriinae constitutes an endemic lineage of ground sloths from South American, with a biochron age ranging the lapse “Friasian”-Lujanian SALMAs (middle Miocene-early Holocene). An integral phylogenetic and taxonomic revision of the Qua- ternary Scelidotheriinae shows that it is possible to recognize three genera and six species: Scelidotherium Owen (Scelidotherium leptocephalum and S. bravardi), Val- gipes Gervais (Valgipes bucklandi), and Catonyx Ameghino (Catonyx cuvieri, C. tari- jensis, and C. chiliensis). One of the most noticeable aspects in some specimens analyzed (n= 47) was the presence of two morphtypes in each species at the level of the dorsal crests of the skull (parasagittal crests and sagittal crest) and at the level of the distal-most region of the mandible (only in C. tarijensis). In all but two species (S. leptocephalum and S. bravardi) the two types involve the absence and presence of a sagittal crest. We suggest that specimens with sagittal crest are males, and specimens lacking sagittal crest are females. This represents the third reported ground sloth clade with evidence of sexual dimorphism of the skull and mandible. Ángel R. Miño-Boilini. Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) y Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste.
    [Show full text]