Biomaterial Evolution Parallels Behavioral Innovation in the Origin of SUBJECT AREAS: ZOOLOGY Orb-Like Spider Webs EVOLUTION Todd A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Insights Into the Subterranean Crustacean Bathynellacea
RESEARCH ARTICLE First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms Bo-Mi Kim1, Seunghyun Kang1, Do-Hwan Ahn1, Jin-Hyoung Kim1, Inhye Ahn1,2, Chi- Woo Lee3, Joo-Lae Cho4, Gi-Sik Min3*, Hyun Park1,2* a1111111111 1 Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea, 2 Polar Sciences, a1111111111 University of Science & Technology, Yuseong-gu, Daejeon, South Korea, 3 Department of Biological a1111111111 Sciences, Inha University, Incheon, South Korea, 4 Nakdonggang National Institute of Biological Resources, a1111111111 Sangju, South Korea a1111111111 * [email protected] (HP); [email protected] (GM) Abstract OPEN ACCESS Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crusta- Citation: Kim B-M, Kang S, Ahn D-H, Kim J-H, Ahn I, Lee C-W, et al. (2017) First Insights into the ceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occa- Subterranean Crustacean Bathynellacea sionally found in caves and even hot springs. In this study, we sequenced the whole Transcriptome: Transcriptionally Reduced Opsin transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly Repertoire and Evidence of Conserved produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were Homeostasis Regulatory Mechanisms. PLoS ONE 12(1): e0170424. doi:10.1371/journal. most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, pone.0170424 no opsin or related sequences were identified, and no contig aligned to the crustacean visual Editor: Peng Xu, Xiamen University, CHINA opsins and non-visual opsins (i.e. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
A Review of the Chinese Psechridae (Araneae)
2001. The Journal of Arachnology 29:330±344 A REVIEW OF THE CHINESE PSECHRIDAE (ARANEAE) Xin-Ping Wang: Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118 USA Chang-Min Yin: Hunan Biological Institute, Hunan Teachers University, Changsha, Hunan 410008 China ABSTRACT. The Chinese psechrid spiders of the genera Fecenia and Psechrus are reviewed. The species Fecenia hainanensis is newly synonymized with F. cylindrata. The species P. mimus is considered a nomen dubium. The species P. senoculata is regarded as a valid species. The male is newly described for P. tingpingensis. Three new species are described: P. jinggangensis new species, P. rani new species, and P. taiwanensis new species. In all, nine psechrid species are recognized from China. The spinnerets, trichobothria, and tarsal organ morphology of P. tingpingensis are presented. A key to Chinese Psechrus species is also provided. Keywords: Psechridae, Psechrus, Fecenia, China Psechrid species of the genera Fecenia Si- based on an unidenti®able juvenile female mon 1887 and Psechrus Thorell 1878 are (Chamberlin 1924), is considered a nomen widespread from China (north to Qinling Mt., dubium, and therefore the species P. seno- Shaanxi) and southeast Asia to New Guinea, culata is removed from its synonymy. The with approximately 19 valid species (Platnick male is newly described for P. tingpingensis. 2000). A revision of this family was pre- The female previously identi®ed as P. sinen- sented by Levi (1982), who gave detailed di- sis by Levi (1982) is shown to be a new spe- agnoses, illustrations, and descriptions of the cies. Three new species described in this family, genera, and species. -
A List of Utah Spiders, with Their Localities
Great Basin Naturalist Volume 43 Number 3 Article 22 7-31-1983 A list of Utah spiders, with their localities Dorald M. Allred Brigham Young University B. J. Kaston San Diego State University, San Diego, California Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Allred, Dorald M. and Kaston, B. J. (1983) "A list of Utah spiders, with their localities," Great Basin Naturalist: Vol. 43 : No. 3 , Article 22. Available at: https://scholarsarchive.byu.edu/gbn/vol43/iss3/22 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A LIST OF UTAH SPIDERS, WITH THEIR LOCALITIES Allred' B. Kaston- Dorald M. and J. Abstract. — The 621 species of spiders known to occnr in Utah as recorded in the Hterature or Utah universities' collections are listed with their junior synonyms and collection localities. Two-fifths (265 species) are known from onlv one locality each, and only one-fifth (123 species) from five or more localities in the state. Little is known of the distribution or eco- Much of our knowledge of Utah spiders logical relationships of Utah spiders. Each of was contributed by Ralph Chamberlin, who 265 species of the 621 recorded for the State authored or coauthored the naming of 220 of is known from only one locality. Even the the species listed for Utah. -
The Phylogenetic Placement of Psechridae Within Entelegynae and the Convergent Origin of Orb-Like Spider Webs
Accepted on 22 September 2012 © 2012 Blackwell Verlag GmbH J Zoolog Syst Evol Res doi: 10.1111/jzs.12007 1Department of Biology, University of Vermont, Burlington VT, ; 2National Museum of Natural History, Smithsonian Institution, Washington DC, USA; 3Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana Slovenia; 4Department of Biology and Integrated Bioscience Program, University of Akron, Akron OH, USA; 5College of Life Sciences, Hubei University, Wuhan Hubei, China The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs 1,2 3 4 2,3,5 INGI AGNARSSON *, MATJAŽ GREGORIČ ,TODD A. BLACKLEDGE and MATJAŽ KUNTNER Abstract Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb-like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechri- dae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia’s exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo-orb versus their independent origins, a potentially spectacular case of behavioural convergence. -
Changes in Spinning Anatomy and Thread Stickiness Associated with the Origin of Orb-Weaving Spiders
Biological Journal of the Linnean Society (1999), 68: 593±612. With 18 ®gures Article ID: bijl.1999.0361, available online at http://www.Idealibrary.com on Changes in spinning anatomy and thread stickiness associated with the origin of orb-weaving spiders BRENT D. OPELL Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061±0406, U.S.A. Received 14 September 1998; accepted 25 March 1999 The cribellum is an oval spinning ®eld whose spigots produce silk ®brils that form the outer surfaces of the primitive prey capture threads found in aerial spider webs. A comparison of the cribella and cribellar capture threads of 13 species of spiders representing seven families (Amaurobiidae, Desidae, Dictynidae, Filistatidae, Neolanidae, Oecobiidae, and Uloboridae) con®rms that the stickness of a cribellar thread is directly related to the number of spigots on a spider's cribellum. This comparison also demonstrates that the origin of orb-weaving spiders from ancestors that constructed less highly organized webs was associated with increases in both the weight-speci®c number of cribellum spigots and the weight-speci®c stickiness of cribellar prey capture threads. In contrast to other cribellate spiders, the number of cribellum spigots of orb-weaving species of the family Uloboridae scales to spider mass. Thus, the origin of orb-weaving spiders involved not only behavioural changes that stylized and restricted the placement of cribellar threads, but also included morphological changes that increased the stickiness of these capture threads by endowing them with more cribellar ®brils. 1999 The Linnean Society of London ADDITIONAL KEY WORDS:Ðancestor-reconstruction analysis ± character evolution ± cribellum ± cribellar capture thread ± web architecture. -
Wsn 47(2) (2016) 298-317 Eissn 2392-2192
Available online at www.worldscientificnews.com WSN 47(2) (2016) 298-317 EISSN 2392-2192 Indian Lycosoidea Sundevall (Araneae: Opisthothelae: Araneomorphae) in Different States and Union Territories Including an Annotated Checklist Dhruba Chandra Dhali1,*, P. M. Sureshan1, Kailash Chandra2 1Zoological Survey of India, Western Ghat Regional Centre, Kozkhikore - 673006, India 2Zoological Survey of India, M- Block, New Alipore, Kolkata - 700053, India *E-mail address: [email protected] ABSTRACT Annotated checklist of Lycosoidea so far recorded from different states and union territories of India reveals a total of 251 species under 38 genera belonging five families. The review cleared that diversity of lycosoid spider fauna is maximum in West Bengal followed by Madhya Pradesh, Maharashtra, Tamil Nadu and they are not distributed maximally in the states and union territories within Biodiversity hotspots. This fauna is distributed all over the country. There is nearly 69.35% endemism (in context of India). Keywords: Distribution; Lycosoidea; India; State; Union Territories; Annotated; checklist 1. INTRODUCTION Spiders, composing the order Araneae Clerck, 1757 is the largest group among arachnids and separated into two suborders: Mesothelae Pocock, 1892 (segmented spiders) World Scientific News 47(2) (2016) 298-317 and Opisthothelae Pocock, 1892 (includes all other spiders). Later one is further divided into two infraorders: Mygalomorphae Pocock, 1892 (ancient' spiders) and Araneomorphae Smith, 1902 (modern' spiders include the vast majority of spiders) (Coddington, 2005; WSC, 2015). Araneomorphae composed of 99 families and most of them can be divided into at least six clades and 11 super-families, though some are still unplaced in that system (Zhang, 2011). -
A Proteomic and Transcriptomic Analysis
ISSN: 2044-0324 J Venom Res, 2014, Vol 5, 33-44 RESEARCH ARTICLE Plectreurys tristis venome: A proteomic and transcriptomic analysis Pamela A Zobel-Throppα*, Emily Z Thomasα, Cynthia L Davidβ, Linda A Breciβ and Greta J Binfordα* αDepartment of Biology, Lewis & Clark College, Portland, OR 97219, USA, βArizona Proteomics Consortium, University of Arizona, Tucson, AZ 85721, USA *Correspondence to: Pamela Zobel-Thropp, E-mail: [email protected] (PAZT), Greta Binford, [email protected] (GB), Tel: +503 768 7653, Fax: +503 768 7658 Received: 22 April 2014; Revised: 29 August 2014; Accepted: 15 September 2014; Published: 20 September 2014 © Copyright The Author(s). First Published by Library Publishing Media. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appropriately acknowledged with correct citation details. ABSTRACT Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called “plectoxins” (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U1-PLTX-Pt1a, U3-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U1- and ω-PLTX families and adding U4-through U9-PLTX as six new groups. -
Ah Ie,Canjuseum
Ah ie,canJuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 1920 DECEMBER31, 1958 The Spider Family Plectreuridae BY WILLIS J. GERTSCH1 The primitive hunters of the family Plectreuridae are among the most generalized of all the haplogyne ecribellate spiders. They alone, of a sizable series largely comprising six-eyed types, still retain the full complement of eight eyes. Their habitus is that of the segestriids in that they are short-sighted, nocturnal animals that live a semiseden- tary life in a silken tube. The males have developed coupling spurs on the tibiae of their front legs and probably use them for restraining or positioning the female during courtship and mating. In this feature they are like the males of Ariadna and also, except for smaller size, some of the trap-door spiders. These latter they also resemble in their stance and deliberate gait. The plectreurids spin tubular retreats similar to those of Ariadna, with small entrances fringed or ringed with silk, and they place these domiciles in a variety of dark situations. Favored spots are spaces un- der stones and ground detritus, in small holes of banks along roads and streams, in crevices in the masonry of stone walls and bridges, in adobe walls of fences and houses, and in other appropriate locations. Some species have been taken from cave entrances and others from the floors and walls deep inside caves. The females and various im- mature stages live in their retreats and rarely stray far from them. -
Records of the Canterbury Museum Volume 34 2020
Records of the Canterbury Museum, 2020 Vol. 34: 85–94 85 A redescription of Philoponella congregabilis, an Australian hackled orb weaver spider (Uloboridae) now found in Christchurch, New Zealand Cor J Vink1,2,3 and Kate M Curtis1,3 1Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand 2Zoological Museum, Centre of Natural History, University of Hamburg, Martin-Luther-King-Platz 3, D-0146 Hamburg, Germany 3Department of Pest-management and Conservation, Lincoln University, Lincoln 7647, New Zealand Email: [email protected] Philoponella congregabilis (Rainbow, 1916), an Australian spider in the family Uloboridae, has recently established in Christchurch, New Zealand. The species is redescribed. It builds reduced, horizontal or sloping orb webs in low vegetation, on fences, under eaves and in outbuildings. The webs of different individuals can be interconnected. Philoponella congregabilis is found in eastern and southeastern Australia and its current New Zealand distribution is limited to the southern suburbs of Christchurch. Keywords: invasive spider, taxonomy, uloborid Introduction The Uloboridae include small spiders that are congregabilis (Rainbow, 1916) established unusual in that they do not have cheliceral itself in Christchurch and has now spread to a venom glands. Instead of envenomating number of localities in southern Christchurch. their prey, uloborids wrap their prey tightly Because the original and only description of with large amounts of silk, which breaks the P. congregabilis is not sufficient to identify cuticle (Eberhard et al. 2006). The spider then specimens with certainty, we redescribe P. regurgitates digestive enzymes over its prey congregabilis here. We also plot its current and feeds on the liquefied body (e.g. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Molecular Evolution of Silk Genes in Mesothele and Mygalomorph Spiders, With Implications for the Early Evolution and Functional Divergence of Silk Permalink https://escholarship.org/uc/item/8q80p6s5 Author Starrett, James Richard Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Molecular Evolution of Silk Genes in Mesothele and Mygalomorph Spiders, With Implications for the Early Evolution and Functional Divergence of Silk A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Genetics, Genomics, and Bioinformatics by James Richard Starrett September 2012 Dissertation Committee: Dr. Cheryl Y. Hayashi, Chairperson Dr. Renyi Liu Dr. Mark Springer i Copyright by James Richard Starrett 2012 i i The Dissertation of James Richard Starrett is approved: ____________________________________________ ____________________________________________ ____________________________________________ Committee Chairperson University of California, Riverside ii i Acknowledgements The first chapter of this dissertation is a reprint of the material as it appears in PLoS ONE 7(6): e38084. doi:10.1371/journal.pone.0038084, published 22 June 2012. It is reproduced with permission from James Starrett, Jessica E. Garb, Amanda Kuelbs, Ugochi O. Azubuike, and Cheryl Y. Hayashi and is an open-access article distributed under the terms of the Creative Commons Attribution License. Co-authors Jessica E. Garb, Amanda Kuelbs, and Ugochi O. Azubuike provided research assistance. Co-author Cheryl Y. Hayashi supervised the research and provided lab materials. Research was supported by National Science Foundation (NSF) Doctoral Dissertation Improvement Grant DEB-0910365 to James Starrett and Cheryl Y.