Estimating Inequality Measures from Quantile Data Enora Belz To cite this version: Enora Belz. Estimating Inequality Measures from Quantile Data. 2019. halshs-02320110 HAL Id: halshs-02320110 https://halshs.archives-ouvertes.fr/halshs-02320110 Preprint submitted on 18 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Centre de Recherche en Économie et Management Center for Research in Economics and Management University of Rennes 1 of Rennes University University of Normandie Caen University Estimating Inequality Measures from Quantile Data Enora Belz Univ Rennes, CNRS, CREM UMR 6211, F-35000 Rennes, France Octobre 2019 - WP 2019-09 Working Paper Estimating Inequality Measures from Quantile Data Enora Belz1,* 1Univ Rennes, CNRS, CREM - UMR 6211, F-35000 Rennes, France *
[email protected] Abstract This article focuses on the problem of dealing with aggregate data. It proposes an innovative method for modelling Lorenz curves and estimating inequality indices on small populations, when (only) quantiles are available. When dealing with small population areas and due to privacy restrictions, individual or income share data are often not available and only quantiles are reported. The method is based on conditional expectation in order to find the different income shares and thus model a Lorenz curve with the functional forms already proposed in the literature.