A Pseudosuchian :Reptile from Arizona
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crocodylomorpha, Neosuchia), and a Discussion on the Genus Theriosuchus
bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 5 figures The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus Theriosuchus MARK T. YOUNG1,2, JONATHAN P. TENNANT3*, STEPHEN L. BRUSATTE1,4, THOMAS J. CHALLANDS1, NICHOLAS C. FRASER1,4, NEIL D. L. CLARK5 and DUGALD A. ROSS6 1School of GeoSciences, Grant Institute, The King’s Buildings, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3Department of Earth Science and Engineering, Imperial College London, London SW6 2AZ, UK 4National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK 5The Hunterian, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK 6Staffin Museum, 6 Ellishadder, Staffin, Isle of Skye IV51 9JE, UK Received 1 December 2014; revised 23 June 2015; accepted for publication 24 June 2015 Atoposaurids were a clade of semiaquatic crocodyliforms known from the Late Jurassic to the latest Cretaceous. Tentative remains from Europe, Morocco, and Madagascar may extend their range into the Middle Jurassic. Here we report the first unambiguous Middle Jurassic (late Bajocian–Bathonian) atoposaurid: an anterior dentary from the Isle of Skye, Scotland, UK. A comprehensive review of atoposaurid specimens demonstrates that this dentary can be referred to Theriosuchus based on several derived characters, and differs from the five previously recog- nized species within this genus. Despite several diagnostic features, we conservatively refer it to Theriosuchus sp., pending the discovery of more complete material. As the oldest known definitively diagnostic atoposaurid, this discovery indicates that the oldest members of this group were small-bodied, had heterodont dentition, and were most likely widespread components of European faunas. -
8. Archosaur Phylogeny and the Relationships of the Crocodylia
8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988. -
Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna. -
The Triassic Period - 251 to 205 MY - Tectonics and Climate Life in the Oceans Jarðsaga 1 - Saga Lífs Og Lands – -Ólafur Ingólfsson the Triassic Period
The Triassic Period - 251 to 205 MY - Tectonics and climate Life in the Oceans Jarðsaga 1 - Saga Lífs og Lands – -Ólafur Ingólfsson The Triassic Period The first period of the Mesozoic Era is the Triassic Period, which lasted from 251 to 205 million years ago. The name Triassic comes from Germany where it was originally named the Trias in 1834 by Friedrich August Von Alberti (1795- 1878) because it is represented by a three-part division of rock types in Germany. Triassic tectonic development In many ways, the Triassic was a time of transition. Pangea was fully assembled and remained so through the Triassic, affecting global climate and ocean circulation... Early Triassic climate The Triassic was a greenhouse world, with no evidence of ice at the poles. The interior of Pangea was hot and dry, and warm, temperate climates extended to the Poles. Pangea starts breaking up towards the end of the Triassic Towards the end of the Triassic, a rift develops between Gondwana and Laurasia The first chapter in the formation of the Atlantic Ocean... Late Triassic climate Global climate was warm during the Late Triassic. There was no ice at either North or South Poles. More pronounced climate zonation than during the Early Triassic, less extension of arid areas. Warm temperate conditions extended towards the poles. Space for new life forms to develop The Triassic followed the largest extinction event in the history of life, when 75-90% of all marine species vanished at the end of the Permian. This provided an opportunity for new lifeforms... Triassic marine deposits rather rare Sea level was fairly constant through the Triassic; lack of transgressions makes marine deposits rather rare in the geological record. -
Late Triassic) Adrian P
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/56 Definition and correlation of the Lamyan: A new biochronological unit for the nonmarine Late Carnian (Late Triassic) Adrian P. Hunt, Spencer G. Lucas, and Andrew B. Heckert, 2005, pp. 357-366 in: Geology of the Chama Basin, Lucas, Spencer G.; Zeigler, Kate E.; Lueth, Virgil W.; Owen, Donald E.; [eds.], New Mexico Geological Society 56th Annual Fall Field Conference Guidebook, 456 p. This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
Ministerio De Cultura Y Educacion Fundacion Miguel Lillo
MINISTERIO DE CULTURA Y EDUCACION FUNDACION MIGUEL LILLO NEW MATERIALS OF LAGOSUCHUS TALAMPAYENSIS ROMER (THECODONTIA - PSEUDOSUCHIA) AND ITS SIGNIFICANCE ON THE ORIGIN J. F. BONAPARTE OF THE SAURISCHIA. LOWER CHANARIAN, MIDDLE TRIASSIC OF ARGENTINA ACTA GEOLOGICA LILLOANA 13, 1: 5-90, 10 figs., 4 pl. TUCUMÁN REPUBLICA ARGENTINA 1975 NEW MATERIALS OF LAGOSUCHUS TALAMPAYENSIS ROMER (THECODONTIA - PSEUDOSUCHIA) AND ITS SIGNIFICANCE ON THE ORIGIN OF THE SAURISCHIA LOWER CHANARIAN, MIDDLE TRIASSIC OF ARGENTINA* by JOSÉ F. BONAPARTE Fundación Miguel Lillo - Career Investigator Member of CONICET ABSTRACT On the basis of new remains of Lagosuchus that are thoroughly described, including most of the skeleton except the manus, it is assumed that Lagosuchus is a form intermediate between Pseudosuchia and Saurischia. The presacral vertebrae show three morphological zones that may be related to bipedality: 1) the anterior cervicals; 2) short cervico-dorsals; and 3) the posterior dorsals. The pelvis as a whole is advanced, in particular the pubis and acetabular area of the ischium, but the ilium is rather primitive. The hind limb has a longer tibia than femur, and the symmetrical foot is as long as the tibia. The tarsus is of the mesotarsal type. The morphology of the distal area of the tibia and fibula, and the proximal area of the tarsus, suggest a stage transitional between the crurotarsal and mesotarsal conditions. The forelimb is proportionally short, 48% of the hind limb. The humerus is slender, with advanced features in the position of the deltoid crest. The radius and ulna are also slender, the latter with a pronounced olecranon process. A new family of Pseudosuchia is proposed for this form: Lagosuchidae. -
New Transitional Fossil from Late Jurassic of Chile Sheds Light on the Origin of Modern Crocodiles Fernando E
www.nature.com/scientificreports OPEN New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles Fernando E. Novas1,2, Federico L. Agnolin1,2,3*, Gabriel L. Lio1, Sebastián Rozadilla1,2, Manuel Suárez4, Rita de la Cruz5, Ismar de Souza Carvalho6,8, David Rubilar‑Rogers7 & Marcelo P. Isasi1,2 We describe the basal mesoeucrocodylian Burkesuchus mallingrandensis nov. gen. et sp., from the Upper Jurassic (Tithonian) Toqui Formation of southern Chile. The new taxon constitutes one of the few records of non‑pelagic Jurassic crocodyliforms for the entire South American continent. Burkesuchus was found on the same levels that yielded titanosauriform and diplodocoid sauropods and the herbivore theropod Chilesaurus diegosuarezi, thus expanding the taxonomic composition of currently poorly known Jurassic reptilian faunas from Patagonia. Burkesuchus was a small‑sized crocodyliform (estimated length 70 cm), with a cranium that is dorsoventrally depressed and transversely wide posteriorly and distinguished by a posteroventrally fexed wing‑like squamosal. A well‑defned longitudinal groove runs along the lateral edge of the postorbital and squamosal, indicative of a anteroposteriorly extensive upper earlid. Phylogenetic analysis supports Burkesuchus as a basal member of Mesoeucrocodylia. This new discovery expands the meagre record of non‑pelagic representatives of this clade for the Jurassic Period, and together with Batrachomimus, from Upper Jurassic beds of Brazil, supports the idea that South America represented a cradle for the evolution of derived crocodyliforms during the Late Jurassic. In contrast to the Cretaceous Period and Cenozoic Era, crocodyliforms from the Jurassic Period are predomi- nantly known from marine forms (e.g., thalattosuchians)1. -
CROCODYLIFORMES, MESOEUCROCODYLIA) from the EARLY CRETACEOUS of NORTH-EAST BRAZIL by DANIEL C
[Palaeontology, Vol. 52, Part 5, 2009, pp. 991–1007] A NEW NEOSUCHIAN CROCODYLOMORPH (CROCODYLIFORMES, MESOEUCROCODYLIA) FROM THE EARLY CRETACEOUS OF NORTH-EAST BRAZIL by DANIEL C. FORTIER and CESAR L. SCHULTZ Departamento de Paleontologia e Estratigrafia, UFRGS, Avenida Bento Gonc¸alves 9500, 91501-970 Porto Alegre, C.P. 15001 RS, Brazil; e-mails: [email protected]; [email protected] Typescript received 27 March 2008; accepted in revised form 3 November 2008 Abstract: A new neosuchian crocodylomorph, Susisuchus we recovered the family name Susisuchidae, but with a new jaguaribensis sp. nov., is described based on fragmentary but definition, being node-based group including the last com- diagnostic material. It was found in fluvial-braided sedi- mon ancestor of Susisuchus anatoceps and Susisuchus jagua- ments of the Lima Campos Basin, north-eastern Brazil, ribensis and all of its descendents. This new species 115 km from where Susisuchus anatoceps was found, in corroborates the idea that the origin of eusuchians was a rocks of the Crato Formation, Araripe Basin. S. jaguaribensis complex evolutionary event and that the fossil record is still and S. anatoceps share a squamosal–parietal contact in the very incomplete. posterior wall of the supratemporal fenestra. A phylogenetic analysis places the genus Susisuchus as the sister group to Key words: Crocodyliformes, Mesoeucrocodylia, Neosuchia, Eusuchia, confirming earlier studies. Because of its position, Susisuchus, new species, Early Cretaceous, north-east Brazil. B razilian crocodylomorphs form a very expressive Turonian–Maastrichtian of Bauru basin: Adamantinasu- record of Mesozoic vertebrates, with more than twenty chus navae (Nobre and Carvalho, 2006), Baurusuchus species described up to now. -
A New Phylogenetic Analysis of Phytosauria (Archosauria: Pseudosuchia) with the Application of Continuous and Geometric Morphometric Character Coding
A new phylogenetic analysis of Phytosauria (Archosauria: Pseudosuchia) with the application of continuous and geometric morphometric character coding Andrew S. Jones and Richard J. Butler School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK ABSTRACT Phytosauria is a clade of large, carnivorous, semi-aquatic archosauromorphs which reached its peak diversity and an almost global distribution in the Late Triassic (c. 230–201 Mya). Previous phylogenetic analyses of Phytosauria have either focused primarily on the relationships of specific subclades, or were limited in taxonomic scope, and no taxonomically comprehensive dataset is currently available. We here present the most taxonomically comprehensive cladistic dataset of phytosaurs to date, based on extensive first-hand study, identification of novel characters and synthesis of previous matrices. This results in an almost twofold increase in phylogenetic information scored per taxon over previous analyses. Alongside a traditional discrete character matrix, three variant matrices were analysed in which selected characters were coded using continuous and landmarking methods, to more rigorously explore phytosaur relationships. Based on these four data matrices, four tree topologies were recovered. Relationships among non-leptosuchomorph phytosaurs are largely consistent between these four topologies, whereas those of more derived taxa are more variable. Rutiodon carolinensis consistently forms a sister relationship with Angistorhinus. In three topologies Nicrosaurus nests deeply within a group of traditionally Submitted 24 April 2018 non-Mystriosuchini taxa, leading us to redefine Mystriosuchini by excluding 9 October 2018 Accepted Nicrosaurus as an internal specifier. Two distinct patterns of relationships within Published 10 December 2018 Mystriosuchini are present in the four topologies, distinguished largely by the Corresponding author Andrew S. -
Braincase Anatomy of Almadasuchus Figarii (Archosauria, Crocodylomorpha) and a Review of the Cranial Pneumaticity in the Origins of Crocodylomorpha
Received: 30 September 2019 | Revised: 8 January 2020 | Accepted: 24 January 2020 DOI: 10.1111/joa.13171 ORIGINAL ARTICLE Braincase anatomy of Almadasuchus figarii (Archosauria, Crocodylomorpha) and a review of the cranial pneumaticity in the origins of Crocodylomorpha Juan Martín Leardi1,2 | Diego Pol2,3 | James Matthew Clark4 1Instituto de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Departamento de Abstract Ciencias Geológicas, Facultad de Ciencias Almadasuchus figarii is a basal crocodylomorph recovered from the Upper Jurassic lev- Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina els of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. 2Departamento de Biodiversidad y Biología This taxon is represented by cranial remains, which consist of partial snout and pala- Experimental, Facultad de Ciencias Exactas tal remains; an excellently preserved posterior region of the skull; and isolated post- y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina cranial remains. The skull of the only specimen of the monotypic Almadasuchus was 3Museo Paleontológico Egidio Feruglio, restudied using high-resolution computed micro tomography. Almadasuchus has an CONICET, Chubut, Argentina apomorphic condition in its skull shared with the closest relatives of crocodyliforms 4Department of Biological Sciences, George Washington University, Washington, DC, (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the USA otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several Correspondence cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal ca- Juan Martín Leardi, CONICET, Instituto rotids) on the occipital surface of the skull. The endocast is tubular, as previously de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Facultad de Ciencias Exactas reported in thalattosuchians, but has a marked posterior step, and a strongly pro- y Naturales, Departamento de Ciencias jected floccular recess as in other basal crocodylomorphs. -
A New Longirostrine Dyrosaurid
[Palaeontology, Vol. 54, Part 5, 2011, pp. 1095–1116] A NEW LONGIROSTRINE DYROSAURID (CROCODYLOMORPHA, MESOEUCROCODYLIA) FROM THE PALEOCENE OF NORTH-EASTERN COLOMBIA: BIOGEOGRAPHIC AND BEHAVIOURAL IMPLICATIONS FOR NEW-WORLD DYROSAURIDAE by ALEXANDER K. HASTINGS1, JONATHAN I. BLOCH1 and CARLOS A. JARAMILLO2 1Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; e-mails: akh@ufl.edu, jbloch@flmnh.ufl.edu 2Smithsonian Tropical Research Institute, Box 0843-03092 and #8232, Balboa-Ancon, Panama; e-mail: [email protected] Typescript received 19 March 2010; accepted in revised form 21 December 2010 Abstract: Fossils of dyrosaurid crocodyliforms are limited rosaurids. Results from a cladistic analysis of Dyrosauridae, in South America, with only three previously diagnosed taxa using 82 primarily cranial and mandibular characters, sup- including the short-snouted Cerrejonisuchus improcerus from port an unresolved relationship between A. guajiraensis and a the Paleocene Cerrejo´n Formation of north-eastern Colom- combination of New- and Old-World dyrosaurids including bia. Here we describe a second dyrosaurid from the Cerrejo´n Hyposaurus rogersii, Congosaurus bequaerti, Atlantosuchus Formation, Acherontisuchus guajiraensis gen. et sp. nov., coupatezi, Guarinisuchus munizi, Rhabdognathus keiniensis based on three partial mandibles, maxillary fragments, teeth, and Rhabdognathus aslerensis. Our results are consistent with and referred postcrania. The mandible has a reduced seventh an African origin for Dyrosauridae with multiple dispersals alveolus and laterally depressed retroarticular process, both into the New World during the Late Cretaceous and a transi- diagnostic characteristics of Dyrosauridae. Acherontisuchus tion from marine habitats in ancestral taxa to more fluvial guajiraensis is distinct among known dyrosaurids in having a habitats in more derived taxa. -
First Post-Mesozoic Record of Crocodyliformes from Chile
First post−Mesozoic record of Crocodyliformes from Chile STIG A. WALSH and MARIO SUÁREZ Walsh, S.A. and Suárez, M. 2005. First post−Mesozoic record of Crocodyliformes from Chile. Acta Palaeontologica Polonica 50 (3): 595–600. Fossil crocodilians are well known from vertebrate bearing localities in South America, but the last record of the group in Chile is from the Cretaceous. No living crocodilians occur in Chile today, and the timing of their disappearance from the country is unknown. We provide the first post−Mesozoic report of crocodilian remains from late Miocene marine deposits of the Bahía Inglesa Formation, northern Chile. The fragmentary material provides proof that Crocodiliformes were pres− ent in Chile until at least seven million years ago. We suggest that late Neogene climatic cooling and changes in South American palaeophysiography caused the extinction of the group in Chile. Key words: Crocodyliformes, climate change, extinction, Bahía Inglesa Formation, Neogene, Chile. Stig A. Walsh [[email protected]], Department of Palaeontology, Natural History Museum, Cromwell Road, London, United Kingdom; Mario E. Suárez [[email protected]], Museo Paleontológico de Caldera, Av. Wheelright, Caldera, Chile. Introduction Inglesa Formation of northern Chile. The occurrence of these specimens in late Miocene sediments demonstrates that cro− Crocodilians have a long and diverse fossil record in South codilians were present in Chile until at least seven million America, with Tertiary freshwater and terrestrial deposits in years ago. particular having provided exceptionally rich faunas. In fact, Institutional abbreviations.—BMNH, Natural History Mu− crocodilians are encountered throughout much of the South seum, London, United Kingdom; MNHN, Muséum National American Tertiary, and are known from Argentina, Brazil, d’Histoire Naturelle, Paris, France; SGO−PV, Sección Pale− Colombia, Peru, and Venezuela (Langstone 1965; Buffetaut ontología, Museo Nacional de Historia Natural, Santiago, 1982; Gasparini 1996; Brochu 1999; Kay et al.