Technische Universität München

New Approaches for Shape & Topology Optimization for Crashworthiness keynote lecture

Prof. Dr. Fabian Duddeck Technische Universität München Germany [email protected] Technische Universität München

Acknowledgements

My PhD students: S. Hunkeler, M. Rayamajhi, A. Berger Queen Mary University of London (QMUL) K. Volz, T. Dietrich, J. Fender Technische Universität München (TUM) C. Ortmann TUM in collaboration with HAW Hamburg My research partners K.-U. Bletzinger and his team from the TUM H. Zimmer, M. Prabhuwaingankar, and the team of SFE GmbH L. Rota, M. Zarroug (PSA -Citroen) A. Schumacher (HAW Hamburg) and E. Schelkle (ASC-S) H. Müllerschön (DYNAmore GmbH) F. Dirschmid, G. Fichtinger, O. Meyer, A. Übelacker, M. Zimmermann (BMW) J. Will (DYNARDO GmbH) T. Pyttel (ESI GmbH & FH Gießen-Friedberg)

May-11 Duddeck 2 Technische Universität München

Outline

1. New Challenges 2. State-of-the-Art in Shape & Topology Optimization for Crashworthiness 3. New Approaches for Shape & Topology Optimization for Crashworthiness 4. Conclusions

May-11 Duddeck 3 Technische Universität München

Outline

1. New Challenges 2. State-of-the-Art in Shape & Topology Optimization for Crashworthiness 3. New Approaches for Shape & Topology Optimization for Crashworthiness 4. Conclusions

May-11 Duddeck 4 Technische Universität München

New Challenges: New Structural Concepts!

Aixam Mega BMW Bolloré/Pininfarina BYD Daimler Mega E-City E-mini Blue E6 ed

General Motors Mitsubishi Nissan Reva Volt Will i-Miev E-Cube G-Wiz

???

Subaru Tesla Motors Th!nk Volkswagen R1e Roadster City Twin Drive

ETC/ACC Technical Paper 2009/4 Electric F. Hacker, R. Harthan, F. Matthes, W. Zimmer

May-11 Duddeck 5 Technische Universität München

New Challenges: New Structural Concepts!

www.loremo.com

May-11 Duddeck 6 Technische Universität München

New Challenges: Electromobility

www.mute-automobile.de www.llb.mw.tum.de

May-11 Duddeck 7 Technische Universität München

New Challenges: Electromobility

www.mute-automobile.de www.llb.mw.tum.de

May-11 Duddeck 8 Technische Universität München

New Challenges: New Materials (CFRP)

www.bmw-i.de

May-11 Duddeck 9 Technische Universität München

Lightweight Design (e.g. SuperLightCar EU Project)

SP1 Design Concepts SLC Body Concept

1) Steel intensive < 2,5 €/kg

2) Multi material, economic (ULBC) < 5 €/kg

3) Multi material, advanced (SLBC) < 10 €/kg

SP2 Materials & Manufacturing Technologies SP4 End of 2008 Technology-Benchmarking Complete Multi-Material Forming Body structure Joining Prototype Assembly Demonstration

SP3 Simulation & Testing Life Cycle Analysis (LCA) ■ Cost assessment ■ Virtual and physical Testing

2005 2006 2007 2008 2009

M. Stehlin, Volkswagen 2008

May-11 Duddeck 10 Technische Universität München

New Approach: Integral Lightweight Design

Established: Multi-material, forming, joining assembly, life-cycle, etc.

SFE GmbH & Porsche SFE GmbH + Optimal Structure + Optimal Package & Design (Size, Shape & Topology) (New Concepts)

May-11 Duddeck 11 Technische Universität München

Shape and Topology Optimization for Crash

Concept

Material Steel Aluminium Composites

Topology

Shape

Size (thickness)

Zimmer, Hänschke

May-11 Duddeck 12 Technische Universität München

Topology Opt. for Crash (1): Ground Structure

Ground structure approach

Domain is meshed by beams.

• Design variables: size of cross-section areas

• Objectives: acceleration, displacement, compliance Pedersen (2004)

May-11 Duddeck 13 Technische Universität München

Topology Opt. for Crash (1): Ground Structure

Rigid wall (sliding) Passenger cabin

Tire

Engine 75 kg Car mass 750 kg

• Implicit FEM • Analytic sensitivities • No contact, no inertia • Low generality in geometry Pedersen (2004)

May-11 Duddeck 14 Technische Universität München

Topology Opt. for Crash (2): Equivalent Static Loads

Communal structure • Nonlinear crash cases Partly comm. structure represented by equivalent Topology variation linear static load cases Specific structure • Only beam elements and single masses • For optimisation: size variables dimensions of the cross-sections (gauge, height, width, orientation) Mass-beam model for size, shape • Shape variables: and topology optimisation Connection points of the beams

Torstenfelt B and Klarbring A (2007): Conceptual optimal design of modular car product families using simultaneous size, shape and topology optimization. Finite Elem. in Analysis & Design 43, 1050 – 1061.

May-11 Duddeck 15 Technische Universität München

Shape Opt. for Crash (1): Morphing

Morphing boxes

Georgios 2009 Morphing can only realise small geometrical modifications a More flexible shape optimization methods required

May-11 Duddeck 16 Technische Universität München

Shape Opt. for Crash (1): Beyond Morphing

© SFE GmbH 2011

SFE CONCEPT model SFE CONCEPT FE model

H. Zimmer, M. Prabhuwaingankar, F. Duddeck (2009): Topology & geometry based structure optimization using implicit parametric models and LSOPT. 7th Europ. LS-DYNA Conf., Salzburg, Austria.

May-11 Duddeck 17 Technische Universität München

Outline

1. New Challenges 2. State-of-the-Art in Shape & Topology Optimization for Crashworthiness 3. New Approaches for Shape & Topology Optimization for Crashworthiness 4. Conclusions

May-11 Duddeck 18 Technische Universität München

Topology Opt. for Crash (3): Hybrid Cellular Automata

Initial design

Crash analysis x(k+1) U(x(k))

Update material distribution using HCA rule Δx = f(U,U*)

x(k+1) = x(k)+Δx

Convergence test no

yes

Final design

A Tovar & JE Renaud (2008): Altair HyperWorks Symposium

May-11 Duddeck 19 Technische Universität München

Topology Opt. for Crash (3): Hybrid Cellular Automata

Linear-static

v 0=40 m/s Nonlinear 5 x 10 static 16 linear nonlinear 14 dynamic

12

10 Nonlinear 8 dynamic

6

4

2

0 0 50 100 150 200 A Tovar & JE Renaud (2008): Altair HyperWorks Symposium

May-11 Duddeck 20 Technische Universität München

Topology Opt. for Crash (3): Hybrid Cellular Automata

Hunkeler (PhD thesis), Duddeck (QMUL)

May-11 Duddeck 21 Technische Universität München

Topology Opt. for Crash (4): Graph-based Method

• Setup of different designs with „library parts“, e.g. beams, panels • Each library part has a representation as an attributed mathematical (sub-)graph • Library parts can be connected to make up structures • Topological changes are applied as changes to the design graph • Graph based topology optimization is understood as optimization of the design graph topology • Shape optimization is applied in an inner loop in each topological iteration

A Schumacher & C Ortmann (2011): CARHS Automotive Grand Challenge

May-11 Duddeck 22 Technische Universität München

Topology Opt. for Crash (4): Graph-based Method

A Schumacher & C Ortmann (2011): CARHS Automotive Grand Challenge

May-11 Duddeck 23 Technische Universität München

Topology Opt. for Crash (4): Graph-based Method

triangular panel

beam

coordinate vertex and structural link

quadrangular panel

A Schumacher & C Ortmann (2011): CARHS Automotive Grand Challenge

May-11 Duddeck 24 SFE CONCEPT: Data Flow

Technische Universität München Parametric models revolutionize the VPD

SFE CONCEPT for Shape and Topology Optimization

SFE CONCEPT Parametric Model

Points and Lines

Cross Sections

Joints & Beams

Freeform Surfaces

Beads, Stamps, Ribs

FE Meshes

Welds, Adhesives

Loading, Etc.

May-11 Duddeck 25 SFE CONCEPT: Data Flow

Technische Universität München Parametric models revolutionize the VPD

SFE CONCEPT for Shape and Topology Optimization

May-11 Duddeck 26 SFE CONCEPT: Data Flow Challenges in optimization Technische Universität München Parametric models revolutionize the VPD

Parameterization for Optimization (Two Types)

Maintaining geometrical and Maintaining geometrical and topological compatibility is topological compatibility is nearly impossible automatic and very easy

Explicit parameterization Implicit parameterization (CAD) (SFE CONCEPT)

May-11 Duddeck 27 SFE CONCEPT: Data Flow Challenges in optimization Technische Universität München Parametric models revolutionize the VPD

Parameterization for Optimization (Two Types)

Without With surface map surface map

1.1)

1.1) 2.) ? 1.2)

Following information is lost: Automatically done: • Multi-flange assignment • Reparametrising the map-targets • Joining assignment • Identifying the flanges/joining

May-11 Duddeck 28 SFE CONCEPT: Data Flow

Technische Universität München Parametric models revolutionize the VPD

Combined Shape and Topology Optimization

Script for model FE mesh & Batch update & FE boundary mode DV in mesh creation conditions ASCII format DV-file SFE CONCEPT FE mesh & Design Design Boundary Modified variables design variables in conditions variables optimizer format Problem definition (only done once) Design variables Optimization loop FE SOLVER Optimizer LS-DYNA, NASTRAN, (e.g. LS/OPT, in house) PAM-CRASH, PERMAS ASCII output Objective function RADIOSS, ABAQUS & constraints ASCII output

May-11 Duddeck 29 Technische Universität München

Algorithmic Aspects

Hybrid and hierarchical methods for multi-level optimization

May-11 Duddeck 30 SFE CONCEPT: Data Flow

Technische Universität München Parametric models revolutionize the VPD

Combined Shape and Topology Optimization

Topology Opt. Principle Load Paths

SFE CONCEPT Geometry Model Design Space Package Opt.

Shape & Topology changes

Refinements Optimization

May-11 Duddeck 31 Technische Universität München

Topology Optimization for Crash (ESLM)

• Equivalent static load method Package Design space (ESLM) and standard topology optimization (linear FEM). • Equivalent loads are defined for Optimisation model different time steps based on energy considerations. • Result is embedded in an overall loop “topology – shape – size” optimization. Transfer to shape opt. • Result corresponds well to reference designs • New design alternatives can be Result (topol. opt.) identified K. Volz (PhD Dissertation) TU München & BMW (2011)

May-11 Duddeck 32 Technische Universität München

Topology Optimization for Crash (ESLM)

First load phase Second load case Third load case

K. Volz (Dissertation) TU München & BMW (2011)

May-11 Duddeck 33 Technische Universität München

Topology Optimization for Crash (ESLM)

K. Volz (Dissertation) TU München & BMW (2011)

May-11 Duddeck 34 Technische Universität München

Combined Shape & Topology Opt. (SFE CONCEPT)

K. Volz (Dissertation) TU München & BMW (2011)

May-11 Duddeck 35 Technische Universität München

Conclusions

1. New approaches for topology optimizaton (crash): • Equivalent Static Load Method (ESLM) • Hybrid Cellular Automata (HCA) • Graph-based method 2. New approaches for shape optimization (crash) • Implicit parameterization (SFE CONCEPT) • Direct parameterization (CAD-based) • Morphing, etc. 3. Combined package / material / structure (shape & topology) optimization required.

May-11 Duddeck 36 Technische Universität München

End.

Automotive Trains

Shipping Front Radiator door support

Lift gate Offshore

Front sub-frame

Hood White goods Aerospace SFE GmbH

May-11 Duddeck 37 Technische Universität München

Contact

Prof. Dr. Fabian DUDDECK FG Computational Mechanics Technische Universität München

[email protected]

May-11 Duddeck 38