Toxic Effects of Metals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Update on Challenging Disorders of Pigmentation in Skin of Color Heather Woolery-Lloyd, M.D
Update on Challenging Disorders of Pigmentation in Skin of Color Heather Woolery-Lloyd, M.D. Director of Ethnic Skin Care Voluntary Assistant Professor Miller/University of Miami School of Medicine Department of Dermatology and Cutaneous Surgery What Determines Skin Color? What Determines Skin Color? No significant difference in the number of melanocytes between the races 2000 epidermal melanocytes/mm2 on head and forearm 1000 epidermal melanocytes/mm2 on the rest of the body differences present at birth Jimbow K, Quevedo WC, Prota G, Fitzpatrick TB (1999) Biology of melanocytes. In I. M. Freedberg, A.Z. Eisen, K. Wolff,K.F. Austen, L.A. Goldsmith, S. I. Katz, T. B. Fitzpatrick (Eds.), Dermatology in General Medicine 5th ed., pp192-220, New York, NY: McGraw Hill Melanosomes in Black and White Skin Black White Szabo G, Gerald AB, Pathak MA, Fitzpatrick TB. Nature1969;222:1081-1082 Jimbow K, Quevedo WC, Prota G, Fitzpatrick TB (1999) Biology of melanocytes. In I. M. Freedberg, A.Z. Eisen, K. Wolff, K.F. Austen, L.A. Goldsmith, S. I. Katz, T. B. Fitzpatrick (Eds.), Dermatology in General Medicine 5th ed., pp192- 220, New York, NY: McGraw Hill Role of Melanin-Advantages Melanin absorbs and scatters energy from UV and visible light to protect epidermal cells from UV damage Disadvantages Inflammation or injury to the skin is almost immediately accompanied by alteration in pigmentation Hyperpigmentation Hypopigmentation Dyschromias Post-Inflammatory hyperpigmentation Acne Melasma Lichen Planus Pigmentosus Progressive Macular Hypomelanosis -
Dermatology Eponyms – Sign –Lexicon (P)
2XU'HUPDWRORJ\2QOLQH Historical Article Dermatology Eponyms – sign –Lexicon (P)� Part 2 Piotr Brzezin´ ski1,2, Masaru Tanaka3, Husein Husein-ElAhmed4, Marco Castori5, Fatou Barro/Traoré6, Satish Kashiram Punshi7, Anca Chiriac8,9 1Department of Dermatology, 6th Military Support Unit, Ustka, Poland, 2Institute of Biology and Environmental Protection, Department of Cosmetology, Pomeranian Academy, Slupsk, Poland, 3Department of Dermatology, Tokyo Women’s Medical University Medical Center East, Tokyo, Japan, 4Department of Dermatology, San Cecilio University Hospital, Granada, Spain, 5Medical Genetics, Department of Experimental Medicine, Sapienza - University of Rome, San Camillo-Forlanini Hospital, Rome, Italy, 6Department of Dermatology-Venerology, Yalgado Ouédraogo Teaching Hospital Center (CHU-YO), Ouagadougou, Burkina Faso, 7Consultant in Skin Dieseases, VD, Leprosy & Leucoderma, Rajkamal Chowk, Amravati – 444 601, India, 8Department of Dermatology, Nicolina Medical Center, Iasi, Romania, 9Department of Dermato-Physiology, Apollonia University Iasi, Strada Muzicii nr 2, Iasi-700399, Romania Corresponding author: Piotr Brzezin′ski, MD PhD, E-mail: [email protected] ABSTRACT Eponyms are used almost daily in the clinical practice of dermatology. And yet, information about the person behind the eponyms is difficult to find. Indeed, who is? What is this person’s nationality? Is this person alive or dead? How can one find the paper in which this person first described the disease? Eponyms are used to describe not only disease, but also clinical signs, surgical procedures, staining techniques, pharmacological formulations, and even pieces of equipment. In this article we present the symptoms starting with (P) and other. The symptoms and their synonyms, and those who have described this symptom or phenomenon. Key words: Eponyms; Skin diseases; Sign; Phenomenon Port-Light Nose sign or tylosis palmoplantaris is widely related with the onset of squamous cell carcinoma of the esophagus. -
PVC) Products ______
CPSC Staff Report on Lead and Cadmium in Children's Polyvinyl Chloride (PVC) Products ___________________________________________ 21 November 1997 U.S. Consumer Product Safety Commission Washington, D.C. 20207 CPSC Staff Report on Lead and Cadmium in Children's Polyvinyl Chloride (PVC) Products November 1997 I. Introduction Since its inception, the U.S. Consumer Product Safety Commission (CPSC) has played a prominent role in protecting the public, especially children, from the hazards of exposure to lead and other toxic chemicals. The CPSC has a strong record of removing products from the marketplace that contain lead and result in exposures that are hazardous to children. Just this past year, Commission action resulted in manufacturers eliminating the use of lead as a stabilizer in vinyl miniblinds, stopping the production of children's jewelry containing lead, and developing and distributing guidance to state health officials and others about lead paint on public playground equipment. Several years ago, CPSC recalled crayons that contained hazardous levels of lead. The Commission is continually screening toys for the presence of lead paint and has recalled many toys that violated the Commission's lead paint standard. In 1996, CPSC found that children could be exposed to hazardous levels of lead in imported non-glossy vinyl (polyvinyl chloride, PVC) miniblinds. Following this discovery, CPSC staff collected and tested a number of children's plastic products that they believed might be repeatedly exposed to sunlight and heat such as the vinyl miniblinds. This type of exposure was shown by CPSC staff to promote the deterioration of the lead-containing PVC miniblind slats and result in the formation of lead dust on the slats' surface. -
Understanding Lead Uptake and Effects Across Species Lines: a Conservation Medicine Based Approach
UNDERSTANDING LEAD UPTAKE AND EFFECTS ACROSS SPECIES LINES: A CONSERVATION MEDICINE BASED APPROACH MARK A. POKRAS AND MICHELLE R. KNEELAND Center for Conservation Medicine, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, USA. E-mail: [email protected] ABSTRACT.—Conservation medicine examines the linkages among the health of people, animals and the environment. Few issues illustrate this approach better than an examination of lead (Pb) toxicity. We briefly review the current state of knowledge on the toxicity of lead and its effects on wildlife, humans, and domestic animals. Lead is cheap and there is a long tradition of its use. But the toxic effects of Pb have also been recognized for centuries. As a result, western societies have greatly reduced many traditional uses of Pb, including many paints, gasoline and solders because of threats to the health of humans and the environment. Legisla- tion in several countries has eliminated the use of lead shot for hunting waterfowl. Despite these advances, a great many Pb products continue to be readily available. Conservationists recognize that hunting, angling and shooting sports deposit thousands of tons of Pb into the environment each year. Because of our concerns for human health and over 100 years of focused research, we know the most about lead poisoning in people. Even today, our knowledge of the long-term sublethal effects of Pb on human health continues to grow dramatically. Our knowledge about lead poisoning in domestic animals is signifi- cantly less. For wild animals, our understanding of lead poisoning is roughly where our knowledge about humans was in the mid-1800s when Tanquerel Des Planches made his famous medical observations (Tan- querel Des Planches 1850). -
10Neurodevelopmental Effects of Childhood Exposure to Heavy
Neurodevelopmental E¤ects of Childhood Exposure to Heavy Metals: 10 Lessons from Pediatric Lead Poisoning Theodore I. Lidsky, Agnes T. Heaney, Jay S. Schneider, and John F. Rosen Increasing industrialization has led to increased exposure to neurotoxic metals. By far the most heavily studied of these metals is lead, a neurotoxin that is particularly dangerous to the developing nervous system of children. Awareness that lead poison- ing poses a special risk for children dates back over 100 years, and there has been increasing research on the developmental e¤ects of this poison over the past 60 years. Despite this research and growing public awareness of the dangers of lead to chil- dren, government regulation has lagged scientific knowledge; legislation has been in- e¤ectual in critical areas, and many new cases of poisoning occur each year. Lead, however, is not the only neurotoxic metal that presents a danger to children. Several other heavy metals, such as mercury and manganese, are also neurotoxic, have adverse e¤ects on the developing brain, and can be encountered by children. Al- though these other neurotoxic metals have not been as heavily studied as lead, there has been important research describing their e¤ects on the brain. The purpose of the present chapter is to review the neurotoxicology of lead poisoning as well as what is known concerning the neurtoxicology of mercury and manganese. The purpose of this review is to provide information that might be of some help in avoiding repeti- tion of the mistakes that were made in attempting to protect children from the dan- gers of lead poisoning. -
Guide to Policy & Practice Questions
OREGON BOARD OF CHIROPRACTIC EXAMINERS GUIDE TO POLICY & PRACTICE QUESTIONS 530 Center St NE, suite 620 Salem, OR 97301 (503) 378-5816 [email protected] Updated/Adopted: 9/17/2020 TABLE OF CONTENTS SECTION I ............................................................................................................................................................................................... 6 DEVICES, PROCEDURES, AND SUBSTANCES ............................................................................................................................... 6 DEVICES ................................................................................................................................................................ 6 BAX 3000 AND SIMILAR DEVICES................................................................................................................................................ 6 BIOPTRON LIGHT THERAPY ........................................................................................................................................................ 6 CPAP MACHINE, ORDERING ....................................................................................................................................................... 6 CTD MARK I MULTI-TORSION TRACTION DEVICE................................................................................................................... 6 DYNATRON 2000 ........................................................................................................................................................................... -
Health Concerns of Heavy Metals (Pb; Cd; Hg) and Metalloids (As)
Health concerns of the heavy metals and metalloids Chris Cooksey • Toxicity - acute and chronic • Arsenic • Mercury • Lead • Cadmium Toxicity - acute and chronic Acute - LD50 Trevan, J. W., 'The error of determination of toxicity', Proc. Royal Soc., 1927, 101B, 483-514 LD50 (rat, oral) mg/kg CdS 7080 NaCl 3000 As 763 HgCl 210 NaF 52 Tl2SO4 16 NaCN 6.4 HgCl2 1 Hodge and Sterner Scale (1943) Toxicity Commonly used term LD50 (rat, oral) Rating 1 Extremely Toxic <=1 2 Highly Toxic 1 - 50 3 Moderately Toxic 50 - 500 4 Slightly Toxic 500 - 5000 5 Practically Non-toxic 5000 - 15000 6 Relatively Harmless >15000 GHS - CLP LD50 Category <=5 1 Danger 5 - 50 2 Danger 50 - 300 3 Danger 300 - 2000 4 Warning Globally Harmonised System of Classification and Labelling and Packaging of Chemicals CLP-Regulation (EC) No 1272/2008 Toxicity - acute and chronic Chronic The long-term effect of sub-lethal exposure • Toxicity - acute and chronic • Arsenic • Mercury • Lead • Cadmium Arsenic • Pesticide o Inheritance powder • Taxidermy • Herbicide o Agent Blue • Pigments • Therapeutic uses Inorganic arsenic poisoning kills by allosteric inhibition of essential metabolic enzymes, leading to death from multi- system organ failure. Arsenicosis - chronic arsenic poisoning. Arsenic LD50 rat oral mg/kg 10000 1000 LD50 100 10 1 Arsine Arsenic acid Trimethylarsine Emerald green ArsenicArsenious trisulfide oxideSodium arsenite MethanearsonicDimethylarsinic acid acid Arsenic poisoning by volatile arsenic compounds from mouldy wall paper in damp rooms • Gmelin (1839) toxic mould gas • Selmi (1874) AsH3 • Basedow (1846) cacodyl oxide • Gosio (1893) alkyl arsine • Biginelli (1893) Et2AsH • Klason (1914) Et2AsO • Challenger (1933) Me3As • McBride & Wolfe (1971) Me2AsH or is it really true ? William R. -
Pharmacology/Therapeutics Ii Block 1 Handouts – 2015-16
PHARMACOLOGY/THERAPEUTICS II BLOCK 1 HANDOUTS – 2015‐16 55. H2 Blockers, PPls – Moorman 56. Palliation of Contipation & Nausea/Vomiting – Kristopaitis 57. On‐Line Only – Principles of Clinical Toxicology – Kennedy 58. Anti‐Parasitic Agents – Johnson Histamine Antagonists and PPIs January 6, 2016 Debra Hoppensteadt Moorman, Ph.D. Histamine Antagonists and PPIs Debra Hoppensteadt Moorman, Ph.D. Office # 64625 Email: [email protected] KEY CONCEPTS AND LEARNING OBJECTIVES . 1 To understand the clinical uses of H2 receptor antagonists. 2 To describe the drug interactions associated with the use of H2 receptor antagonists. 3 To understand the mechanism of action of PPIs 4 To describe the adverse effects and drugs interactions with PPIs 5 To understand when the histamine antagonists and the PPIs are to be used for treatment 6 To describe the drugs used to treat H. pylori infection Drug List: See Summary Table. Histamine Antagonists and PPIs January 6, 2016 Debra Hoppensteadt Moorman, Ph.D. Histamine Antagonists and PPIs I. H2 Receptor Antagonists These drugs reduce gastric acid secretion, and are used to treat peptic ulcer disease and gastric acid hypersecretion. These are remarkably safe drugs, and are now available over the counter. The H2 antagonists are available OTC: 1. Cimetidine (Tagamet®) 2. Famotidine (Pepcid®) 3. Nizatidine (Axid®) 4. Ranitidine (Zantac®) All of these have different structures and, therefore, different side-effects. The H2 antagonists are rapidly and well absorbed after oral administration (bioavailability 50-90%). Peak plasma concentrations are reached in 1-3 hours, and the drugs have a t1/2 of 1-3 hours. H2 antagonists also inhibit stimulated (due to feeding, gastrin, hypoglycemia, vagal) acid secretion and are useful in controlling nocturnal acidity – useful when added to proton pump therapy to control “nocturnal acid breakthrough”. -
The Development of the Periodic Table and Its Consequences Citation: J
Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1. -
BISMUTH LEAD ALLOY Synonyms BISMUTH ALLOY, 5805, HS CODE 78019900 ● NYRSTAR LEAD ALLOYS
1. IDENTIFICATION OF THE MATERIAL AND SUPPLIER 1.1 Product identifier Product name BISMUTH LEAD ALLOY Synonyms BISMUTH ALLOY, 5805, HS CODE 78019900 ● NYRSTAR LEAD ALLOYS 1.2 Uses and uses advised against Uses ALLOY Used for further refining of bismuth and lead metals. 1.3 Details of the supplier of the product Supplier name NYRSTAR PORT PIRIE Address PO Box 219, Port Pirie, SA, 5540, AUSTRALIA Telephone (08) 8638 1500 Fax (08) 8638 1583 Website http://www.nyrstar.com 1.4 Emergency telephone numbers Emergency (08) 8638 1500 2. HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture CLASSIFIED AS HAZARDOUS ACCORDING TO SAFE WORK AUSTRALIA CRITERIA GHS classifications Acute Toxicity: Oral: Category 4 Acute Toxicity: Inhalation: Category 4 Toxic to Reproduction: Category 1A Specific Target Organ Systemic Toxicity (Repeated Exposure): Category 2 2.2 GHS Label elements Signal word DANGER Pictograms Hazard statements H302 Harmful if swallowed. H332 Harmful if inhaled. H360 May damage fertility or the unborn child. H373 May cause damage to organs through prolonged or repeated exposure. Prevention statements P202 Do not handle until all safety precautions have been read and understood. P260 Do not breathe dust/fume/gas/mist/vapours/spray. P264 Wash thoroughly after handling. P270 Do not eat, drink or smoke when using this product. P271 Use only outdoors or in a well-ventilated area. P281 Use personal protective equipment as required. SDS Date: 08 Jun 2018 Page 1 of 7 Version No: 1.3 PRODUCT NAME BISMUTH LEAD ALLOY Response statements P304 + P340 IF INHALED: Remove to fresh air and keep at rest in a position comfortable for breathing. -
Poisoning in Children
ARTICLE IN PRESS Current Paediatrics (2005) 15, 563–568 www.elsevier.com/locate/cupe Poisoning in children Fiona JepsenÃ, Mary Ryan Emergency Medicine, Royal Liverpool Children’s NHS Trust, Alder Hey, Liverpool L12 2AP, UK KEYWORDS Summary Poisoning accounts for about 7% of all accidents in children under 5 Poisoning; years and is implicated in about 2% of all childhood deaths in the developed world, Child; and over 5% in the developing world (National Poisons Information Service). In Accidents; considering this topic, however, it is important to differentiate accidental overdose Home (common in the younger age groups) and deliberate overdose (more common in young adults). Although initial assessment and treatment of these groups may not differ significantly, the social issues and ongoing follow-up of these children will be totally different and the treating physician must remain aware of this difference. The initial identification and treatment of these children remains the mainstay of management, and many ingested substances do not have a specific antidote. Supportive treatment must be planned and the potential for delayed or long-term effects noted. The specific presentation and treatment of some of the commonly ingested substances will be addressed in this article, and guidance given on when to contact expert help. & 2005 Elsevier Ltd. All rights reserved. Introduction such as bleaches, detergents and turpentine sub- stitutes. More than 100 000 individuals are admitted to Toxic compounds may be ingested or inhaled hospital in England and Wales annually due to either accidentally or deliberately. Accidental poisoning, accounting for 10% of all acute admis- poisoning can occur at any age, but is much more 1 sions.1 However, the true incidence of acute common in children. -
Veterinary Toxicology
GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution