Final Copy 2020 11 26 Drizo

Total Page:16

File Type:pdf, Size:1020Kb

Final Copy 2020 11 26 Drizo This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Drizou, Despoina Title: Characterising Red Cell-Derived Vesicles in Sickle Cell Disease and Investigating Potential to Induce Tolerance to Human Red Cell Antigens General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Characterising Red Cell-Derived Vesicles in Sickle Cell Disease and Investigating Potential to Induce Tolerance to Human Red Cell Antigens Despoina Drizou A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Biomedical Sciences School of Cellular and Molecular Medicine August 2020 Word count: 47,960 0 Abstract Patients with sickle cell disease (SCD) receive regular blood transfusions, which can lead to alloimmunisation due to exposure to different red blood cell (RBC) antigens. The spleen is frequently damaged in these patients, resulting in higher numbers of red cell-derived particles (RCDP) and autophagic vesicles (AV). Most RCDP, produced through membrane budding, are right-side out and expose the external domains of RBC proteins, whereas AV are inside-out, exposing cytoplasmic domains. Since SCD patients have higher numbers of RCDP and AV, we aimed to characterise these particles and compare with healthy donor plasma and with storage vesicles (SV) from outdated blood. We also investigated the use of these particles to induce tolerance to RBC antigens, in a murine model. RCDP and AV from SCD and healthy plasma were isolated using immunomagnetic separation. Results using imaging flow cytometry (IS) showed that RBC markers like glycophorins A and C, band 3, glucose transporter1 and phosphatidylserine, were detected in all particles, confirming they originated from RBC. RCDP were more prevalent and generally larger than AV but both particle types were more abundant in SCD than healthy plasma. IS was more sensitive for small particle detection than flow cytometry. The latter detected large ghost membranes. All particle types were detected by transmission electron microscopy (TEM) and immunogold staining against extracellular or cytoplasmic GPA domains further confirmed their RBC origin. TEM, IS and dynamic light scattering showed that RCDP were larger than AV. A model system was developed to investigate tolerance induction in vivo and indicated that both SV and ghosts could be used to prime host animals. In conclusion, small RCDP and AV from SCD and healthy plasma have been characterised for first time, using IS. It may be possible to use particles from blood cells induce tolerance to RBC antigens and thereby reduce alloimmunisation. Abstract word count: 299 1 Dedication and Acknowledgements I have always wanted to pursue a PhD after finishing my undergraduate studies. However, it took several years to find (or to be found by!) the best project I could ever imagine. On top of that, I had the greatest opportunity to work alongside with not only lovely people but also top experts in the field of transfusion and red blood cell biology. I would like to deeply thank my supervisor Dr Allison Blair for all her support, guidance, kindness, invaluable help and for making this 4-year journey easier for me. I am also grateful to my second supervisor, Professor Dave Anstee, for trusting me with his great idea of inducing tolerance in young patients with sickle cell disease, with the aim of improving the quality of their adult life. This thought kept me focused on my work throughout the last and most challenging years. The Ethos and Values of both my supervisors, so different to what I had encountered thus far in the pharmaceutical industry, inspired me to do science to make a difference. It's good to know there are still researchers that are human first and scientists second. Special thanks go to Dr Tosti Mankelow for his instrumental advice, patience and for always being available for me. Many thanks to Dr Rachel Smith for all her help, especially during my first steps in this PhD. This project could not have taken place without the kind contribution of Drs. Tom Latham, Sara Trompeter and their patients; I could not thank them enough. Sincere thanks should also go to Mr Shane Grimsley and Dr Nicole Thorton, as well as all the staff in the Red Cell Reference Lab in IBGRL, Filton. Without their valuable help I would not have managed to perform serology. Special thanks to Professor Lindsay Nicholson for his precious advice to the immunological part of the project. I would also like to thank all the people in the IBGRL in Filton for their help and support, as well as people in C72 office at Bristol University. Many thanks to my Progression Panel members, Professor Jan Frayne and Dr David Morgan for all their advice and guidance. Special thanks to our group members, Dr Ben Ede and particularly Dr Vivian Diamanti for their suggestions on my work. Vivian's gorgeous smile and positive energy have been an energetic boost the past few years. I will be always grateful to Professor Athanasios Koutinas, who saw my passion for research and advised me to do a PhD. I cannot thank enough my parents and my sister Dimitra for everything they have done for me so far. Last but not least, many thanks to my partner Zisimos for his patience, amazing cooking skills and for helping me to deal with stress and anxiety through the sleepless PhD nights. 2 Author’s declaration I declare that the work in this dissertation was carried out in accordance with the requirements of the University's Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate's own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author. SIGNED: Despoina Drizou DATE: 31/08/2020 3 Table of Contents Dedication and Acknowledgements ………..……………….…………………….……………….………2 Author’s Declaration …………………………..…………………………………...……………….….……3 1.1 HAEMOPOIESIS ......................................................................................................................... 14 1.1.1 Production of haemopoietic stem cells .......................................................................... 14 1.1.2 Haemopoietic Hierarchy ................................................................................................ 15 1.1.3 Transcription factors ...................................................................................................... 16 1.1.4 Haemopoietic stem cell regulation by other cells ........................................................... 16 1.2 THE RED BLOOD CELL ............................................................................................................... 17 1.2.1 Function and characteristics .......................................................................................... 17 1.2.2 Formation and maturation ............................................................................................. 17 1.2.3 Metabolic pathways in red cells ..................................................................................... 18 1.2.4 Red cell components ..................................................................................................... 19 1.2.4.1 Haemoglobin .......................................................................................................... 19 1.2.4.2 Red cell membrane composition ............................................................................. 21 1.2.4.3 Phospholipids ......................................................................................................... 22 1.2.4.4 Red blood cell antigens .......................................................................................... 23 1.2.5 Ex vivo generation of red cells ....................................................................................... 24 1.2.6 Animal models of erythropoiesis .................................................................................... 25 1.2.7 Material exported by red cells ........................................................................................ 26 1.3 CELLULAR MICROPARTICLES ....................................................................................................
Recommended publications
  • Medical Immunology.Pdf
    Page i Introduction to Medical Immunology Fourth Edition Edited by Gabriel Virella Medical University of South Carolina Charleston, South Carolina MARCEL DEKKER, INC. NEW YORK • BASEL • HONG KONG Page ii Library of Congress Cataloging-in-Publication Data Introduction to medical immunology / edited by Gabriel Virella. — 4th ed. p. cm. Includes bibliographical references and index. ISBN 0-8247-9897-X (hardcover : alk. paper) 1. Clinical immunology. 2. Immunology. I. Virella, Gabriel. [DNLM: 1. Immunity. 2. Immunologic Diseases. QW 504 I6286 1997] RC582.I59 1997 616.07'9—dc21 DNLM/DLC for Library of Congress 97-22373 CIP The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the address below. This book is printed on acid-free paper. Copyright © 1998 by MARCEL DEKKER, INC. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York 10016 http://www.dekker.com Current printing (last digit): 10 9 8 7 6 5 4 3 2 1 PRINTED IN THE UNITED STATES OF AMERICA Page iii PREFACE Ten years after the publication of the first edition of Introduction to Medical Immunology, the ideal immunology textbook continues to be a very elusive target. The discipline continues to grow at a brisk pace, and the concepts tend to become obsolete as quickly as we put them in writing.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,191,108 B1 Rodkey Et Al
    USOO619 1108B1 (12) United States Patent (10) Patent No.: US 6,191,108 B1 Rodkey et al. (45) Date of Patent: Feb. 20, 2001 (54) RH BLOOD GROUPANTIGEN Moore et al., “Evaluation of monoclonal anti-Rh antibodies COMPOSITIONS AND METHODS OF USE as reagents for blood grouping and for the identification of (76) Inventors: L. Scott Rodkey, 6234 Yarwell, red cell membrane components associated with Rh antigen Houston, TX (US) 77096; Marwan A. activity,” Revue Francaise de Transfusion et Immuno-hé Yared; Kenneth J. Moise, Jr., both of matologie, 31(2):141-144, 1988. 4234 Tennyson, Houston, TX (US) 77005 Paradis et al., “Protective Effect of the Membrane Skeleton (*) Notice: Under 35 U.S.C. 154(b), the term of this on the Immunologic Reactivity of the Human Red Cell patent shall be extended for 0 days. Rho(D) Antigen,” J. Immunol., 137:240–244, 1986. Plapp et al., “Partial Purification of Rh(D) Antigen from Rh (21) Appl. No.: 09/164,789 Positive and Negative Erythrocytes,” Proc. Natl. Acad. Sci. (22) Filed: Oct. 1, 1998 USA, 76:2964-2968, 1979. Related U.S. Application Data Yokoi et al. “Isolation and Purification of Rh(D) Antigen of Human Erythrocyte Membrane and Its Serological Prop 62) DivisiVision off application No.NO. 08/715,173,f3, filedilled On Sep. 17If, 1996, now Pat. No. 5,840,585. erty,’” J. Exp. Med., 141:143–154, 1983. (51) Int. Cl." ..................................................... A61K 38/00 Foreign Search Report dated Dec. 2, 1997. (52) U.S. Cl. ............................................... 514/12; 530/380 (58) Field of Search ................................ 514/12; 530/380 Oellerich M., “Enzyme-Immunoassay: A Review,” J.
    [Show full text]
  • A Review: the Duffy Blood Group System
    A review: the Duffy blood group system K.M. BEATTIE In 1950, two reports described an antibody that had neuraminidase. On the other hand, Fy3, Fy4, and Fy5 been found during the investigation of a hemolytic are not affected. Reactionswith purified trypsin show transfusion reaction in the serum of a 43-year-old man that the Fysup(a) antigen is unaffected and Fy sup(b) is only slightly suffering from hemophilia. 1,2 After the unidentified reduced in strength; Fy3 and Fy6 are slightly enhanced. antibody had been separated from the anti-D, anti-A, The trypsin most commonly used by blood bankers and anti-Bin his serum, it was tested against the blood is a crude preparation that is contaminated with chymo- of 205 unrelated English adults; 64.9 percent were ,agglu- trypsin; therefore, results obtained with that product tinated. With the permission of the patient, the new would approximate those resulting from chymotrypsin blood group system was named Duffy The antigen was treatment. designated as Fysup(a), the gene responsible for it, Fy sup(a), and Inactivation of Fy determinants is such that they are its hypothetical allele, Fysup(b). Anti-Fysup(b) was reported the no longer capable of adsorbing their antithetical anti- following year in the serum of a German woman who bodies. This is not due to the removal of sialic acid but had been pregnant three times but not transfused.sup(3) probably represents proteolytic action on cell membrane Four years later, Fy(a-b-) was reported to be the proteins. Fy(a-b-) red cells are not sialic acid deficient most common phenotype in American blacks.sup(4) and their electrophoretic mobility is normal.
    [Show full text]
  • Rbgp-An-International-Study.Pdf
    IMMUNOHEMATOLOGY Recombinant blood group proteins facilitate the detection of alloantibodies to high-prevalence antigens and reveal underlying antibodies: results of an international study Axel Seltsam,1 Franz Wagner,1 Mark Lambert,2 Tom Bullock,3 Nicole Thornton,3 Erwin A. Scharberg,4 Daniela Grueger,5 Clemens Schneeweiss,5 and Rainer Blasczyk6 n current blood transfusion practice, red blood cell BACKGROUND: Alloantibodies to high-prevalence red (RBC) antibodies are identified using panels of blood cell (RBC) antigens are not easily identified by human RBCs pretyped for the most common blood routine serologic techniques. This multicenter study was group antigens. The specificity of a given antibody is conducted to test the effectiveness of recombinant Iidentified based on the pattern of reactivity observed blood group proteins (rBGPs) at regional and interna- when serum is tested with the cell panel. Since many anti- tional RBC reference laboratories. gens are expressed on RBCs, antibody identification in STUDY DESIGN AND METHODS: Single or mixed RBC-based assays relies on nonreactivity of an antibody soluble rBGPs (Lu, Yt, Kn, JMH, Sc, Rg, Ch, Do, and with panel cells lacking the corresponding antigen. This Cr) were assessed for their ability to inhibit the reactiv- method of antibody identification is challenged if autoan- ity of antibodies to specific antigens. Initially, the effect tibodies, multiple antibodies, or antibodies to high- of rBGPs was validated by testing panels of well- prevalence antigens are present. In such cases, rare characterized patient serum samples containing antisera and cells as well as specially trained personnel antibodies to high-prevalence antigens in the hemagglu- not available to routine laboratories are required for tination inhibition assay.
    [Show full text]
  • Antigens to Detect Or Inhibit Antibodies to Knops (Kn) Blood Group System Antigens
    PRODUCTION OF SOLUBLE RECOMBINANT COMPLEMENT RECEPTOR 1 (CR1) ANTIGENS TO DETECT OR INHIBIT ANTIBODIES TO KNOPS (KN) BLOOD GROUP SYSTEM ANTIGENS WENDY ETHERIDGE A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the Professional Doctorate in Biomedical Science Faculty of Applied Sciences, University of the West of England, Bristol October 2014 ABSTRACT The purpose of this study was to produce a reagent to use in investigation of antibodies directed against the Knops blood group system antigens. A novel reagent based on sr-proteins was produced and used in a new test to inhibit these antibodies. Current investigation of patients with alloantibodies directed against Knops blood group system antigens can be a difficult, time-consuming process and the provision of blood for transfusion of these patients can often be delayed. This is because these antibodies are hard to identify and the most commonly found anti-Knops antibodies react with most reagent or donor cells that they are tested with because the corresponding Knops antigens are found at high frequency in most populations. The presence of Knops related antibodies can mask underlying antibodies that are clinically significant. The Knops antigens are carried on Complement Receptor 1 (CR1) located on the red blood cell membrane. Two DNA constructs encoding different parts of CR1 termed long homologous repeat (LHR) C and D were used to transfect human embryonic kidney (HEK293) cells. The cells were grown in different culture systems. Cell culture supernatant containing soluble recombinant (sr)-LHRC or sr-LHR-D was harvested and purified by affinity gel chromatography.
    [Show full text]
  • FACT-JACIE International Standards for HEMATOPOIETIC CELLULAR THERAPY Product Collection, Processing, and Administration SEVENTH EDITION 7.0
    FACT-JACIE International Standards for HEMATOPOIETIC CELLULAR THERAPY Product Collection, Processing, and Administration SEVENTH EDITION 7.0 INTERNATIONAL STANDARDS FOR HEMATOPOIETIC CELLULAR THERAPY PRODUCT COLLECTION, PROCESSING, AND ADMINISTRATION Seventh Edition Version 7.0 March 2018 NOTICE These Standards are designed to provide minimum guidelines for programs, facilities, and individuals performing cellular therapy or providing support services for such procedures. These Standards are not intended to establish best practices or include all procedures and practices that a program, facility, or individual should implement if the standard of practice in the community or applicable governmental laws or regulations establish additional requirements. Each program, facility, and individual should analyze its practices and procedures to determine whether additional standards apply. Compliance with these Standards is not an exclusive means of complying with the standard of care in the industry or community or with local, national, or international laws or regulations. The Foundation for the Accreditation of Cellular Therapy and the Joint Accreditation Committee – ISCT and EBMT expressly disclaim any responsibility for setting maximum standards and further expressly disclaim any responsibility, liability, or duty to member programs, directors, staff, or program donors or patients for any such liability arising out of injury or loss to any person by the failure of member programs, directors, or staff to adhere to the Standards or related
    [Show full text]
  • AN IMMUNOCHEMICAL INVESTIGATION of the Wr* and Wrb BLOOD GROUP ANTIGENS
    AN IMMUNOCHEMICAL INVESTIGATION OF THE Wr* AND Wrb BLOOD GROUP ANTIGENS. SUSAN MARGARET RING A thesis submitted for the degree of Doctor of Philosophy. Department of Genetics. University College London. August 1992. ProQuest Number: 10608858 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10608858 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT This thesis describes the production of a monoclonal antibody to the low incidence blood group antigen Wr3 which is thought to be allelic to Wr*5 (a high frequency antigen known to be associated with glycophorin A and band 3). The main approach was to immunise mice with Wr(a+) red cells and select appropriate antibodies by screening them against a panel of red cells by haemagglutination. One anti-Wr3 antibody (BGU1-WR) was found from the 1074 hybridomas screened. BGU1-WR belongs to immunoglobulin subclass IgGl and has an affinity constant of 1.82x10^. This antibody and a previously described anti-Wr*5 monoclonal antibody was used to investigate the nature of the antigens.
    [Show full text]
  • EMP3 Enhances Erythroid Proliferation and Causes the MAM-Negative Phenotype ✉ Nicole Thornton 1,11 , Vanja Karamatic Crew 1,11, Louise Tilley1,11, Carole A
    ARTICLE https://doi.org/10.1038/s41467-020-17060-4 OPEN Disruption of the tumour-associated EMP3 enhances erythroid proliferation and causes the MAM-negative phenotype ✉ Nicole Thornton 1,11 , Vanja Karamatic Crew 1,11, Louise Tilley1,11, Carole A. Green2, Chwen Ling Tay1, Rebecca E. Griffiths 2, Belinda K. Singleton2, Frances Spring2, Piers Walser1, Abdul Ghani Alattar 3, Benjamin Jones1, Rosalind Laundy1, Jill R. Storry 3,4, Mattias Möller 3, Lorna Wall 5, Richard Charlewood 5, Connie M. Westhoff6, Christine Lomas-Francis6, Vered Yahalom7, Ute Feick8, Axel Seltsam9, Beate Mayer 10, Martin L. Olsson 3,4,12 & David J. Anstee2,12 1234567890():,; The clinically important MAM blood group antigen is present on haematopoietic cells of all humans except rare MAM-negative individuals. Its molecular basis is unknown. By whole- exome sequencing we identify EMP3, encoding epithelial membrane protein 3 (EMP3), as a candidate gene, then demonstrate inactivating mutations in ten known MAM-negative individuals. We show that EMP3, a purported tumour suppressor in various solid tumours, is expressed in erythroid cells. Disruption of EMP3 by CRISPR/Cas9 gene editing in an immortalised human erythroid cell line (BEL-A2) abolishes MAM expression. We find EMP3 to associate with, and stabilise, CD44 in the plasma membrane. Furthermore, cultured ery- throid progenitor cells from MAM-negative individuals show markedly increased proliferation and higher reticulocyte yields, suggesting an important regulatory role for EMP3 in ery- thropoiesis and control of cell production. Our data establish MAM as a new blood group system and demonstrate an interaction of EMP3 with the cell surface signalling molecule CD44.
    [Show full text]
  • ANZSBT Oral Abstracts Annual Scientific Meeting October 2003 - Christchurch, New Zealand
    ANZSBT Oral Abstracts Annual Scientific Meeting October 2003 - Christchurch, New Zealand ANZSBT ORAL ABSTRACTS FROM The HSANZ/ANZSBT/ASTH Annual Scientific Meeting October 2003 Christchurch, New Zealand ANZSBT Oral Abstracts Annual Scientific Meeting October 2003 - Christchurch, New Zealand 6 Do Blood Group Antigens Play A Biological Role? Garratty G American Red Cross Blood Services, and University of California, Los Angeles, CA There have been thousands of publications purporting to show an association of blood group antigens (BGAs) and disease. Most of these are statistical associations of ABO with various conditions. The first report was as early as 1917. Many of these studies were small and/or not repeatable, but some were large studies and/or the results have been duplicated by many investigators. Although some of the associations seem more akin to astrology than science, others appear now to have a scientific rationale. Some areas of interest have been: BGA associations with 1) malignancy (e.g., BGAs as tumor antigens and adhesion molecules enhancing metastatic potential; 2) receptors for parasites (e.g., malaria/Duffy), bacteria (e.g., E. coli/P, H. pylori/ABH, Le); viruses (e.g., Parvovirus B19/P, HIV/ABO, Le); 3) coagulation (e.g., bleeding/O↑, thrombosis/A↑, Factor VIII/A↑, vW factor/A↑; immunological ligands (e.g., complement/Bg, Ch, Kn, McC, Yk, Cr; adhesion molecules/s-Lex, Lu, Inb (CD44); cytokines/Duffy; integrins/LW). Most of these associations relate to cells other than RBCs, but BGAs may perhaps sometimes play a role as functional molecules in the RBC membrane. Rare null phenotypes sometimes have abnormally shaped RBCs (e.g., Rhnull/stomatocytes; McLeod syndrome (Kell)/acanthocytes; Leach phenotype (Gerbich)/elliptocytes).
    [Show full text]
  • 1971 to 1980 Lister Annual Report and Accounts
    THE LISTER INSTITUTE OF PREVENTIVE MEDICINE Balance Sheet and Accounts 31 DECEMBER 1971 CHELSEA BRIDGE ROAD . LONDON, S.W.I. 23 MAY, 1971 The Governing Body Professor A. NEUBERGER, CBE, md, frcp, frc path, frs, Chairman R. A. McNEILE, mbe, Hon. Treasurer Professor D. A. K. BLACK, M sc, md, frcp Professor D. G. EVANS, cbe, d sc, frc path, frs C. E. GUINNESS Professor HENRY HARRIS, mb, d phil, frs The Rt Hon the EARL OF IVEAGH Professor Sir EWART JONES, D sc, frs Dr. A. F. B. STANDFAST, sc d Clerk to the Governors ... S. A. WHITE, ACCA Financial Report of the Governing Body The Governing Body presents the accounts accounts. These include further payments of the Institute for the year ended on account of the new wing at Chelsea, the 31st December 1971. cost of which is expected to be about 1. Results £400,000. The Governors have transferred to Capital Fund a further £25,000 from the The General Fund Income and Expendi­ Sinking Fund, first set up in 1901 for the ture Account shows the Income for the year replacement and repair of buildings, towards as £405,796 compared with £344,136 in the cost of this new wing. 1970. Expenditure amounted to £545,583 against £495,405 last year. The deficit for 5. Interests in Land the year is £139,787 compared with a deficit The market value of the Institute’s pro­ of £151,269 in 1970. The capital fund has perties is now in excess of the amount at been reduced by the year’s deficit of which they are included in the Balance £139,787.
    [Show full text]
  • Marilyn Jo Telen, MD Primary Academic Appointment
    CURRICULUM VITAE Name: Marilyn Jo Telen, M.D. Primary academic appointment: Professor (with tenure) Department of Medicine Division of Hematology Secondary appointment: Associate Professor Department of Pathology Present academic rank and title: Wellcome Professor of Medicine Division of Hematology Associate Professor of Pathology Assoc. Med. Director, Transfusion Service Director, Duke Comprehensive Sickle Cell Center Medical licensure: Diplomate of National Boards Medical licensure, North Carolina Specialty certification and dates: Diplomate, American Board of Internal Medicine, 1980 Diplomate, ABIM Subspecialty of Hematology, 1984 Citizenship: U.S.A. Education: Place Date Degree G.W. Hewlett High Sch. Hewlett, NY 1961-1965 Regents diploma Vassar College Poughkeepsie, NY 1965-1969 A.B., cum laude New York University New York, NY 1973-1977 M.D. Honors: Matthew Vassar Scholar; Esso Foundation Premedical Scholarship; American Society for Clinical Investigation; Association of American Physicians; Fellow of the American Association for the Advancement of Science; Almita S. R. Woods Award, State of North Carolina Department of Health and Human Services 2004; Duke Medical Alumni Distinguished Faculty Award 2008; Fulbright Scholar (Russia) 2010; Petteway- Shepherd Award, NCABB 2011; American Clinical and Climatological Assocation; 2014 Duke University Research Mentoring Award for Translational Research. Marilyn J. Telen, M.D. Professional training and academic career: Intern in Medicine, Department of Medicine, State University of New York
    [Show full text]
  • Journal of Blood Group Serology and Education Volume 3, No
    American Red Cross Journal of Blood Group Serology and Education Volume 3, No. 1, 1987 CONTENTS SOME NEW Rh ANTIGENS Rh43 TO Rh47 Some New Rb Antigens: Rh43 to Rh47 Peter D. Issitt, Nancy S. Gutgsell Peter D. Issitt, Nancy S. Gutgsell 1 Stimulation of Antibody Following sup(51)Chromium Survival Studies Introduction Susan S Esty, Tracy Wahl, Julie Zawisza In 1962, Rosenfield et al sup(1) reviewed the serology of the Rh blood group Delores Mallory, Richard J Davey 6 system and introduced a numerical terminology. Numbers for the anti- An Example of Mild Hemolytic Disease of the Newborn Caused by gens Rhl to Rh21 were assigned in the text of that report, Rh22 to Rh25 Anti-Cob were listed in an addendum printed as part of the paper. A number of Nancy B. Steffey, Mary A. Lieb 9 reports of new Rh antigens were reviewed by Allen and Rosenfieldsup(2) in Book Review Red Cell Antigens and 1972; in that paper the numbers Rh26 to Rh33 were assigned. In a later Antibodies review, sup(3) time on Rh genetics, Rh34 was named. The term Rh35 seems Mary H. McGinniss 10 this first to have been used in two textbooks published in 1975.sup(4,5) When COMMUNICATIONS: Letter From the Editor 11 we sup(6) described the first examples of anti-Rh39 in 1979, we took the op- ISBT Announcement 11 portunity to update the numerical Rh terminology from Rh36 to Rh39. Instructions for Submitting Articles 11 The next three Rh antigens to be discovered were assigned numbers by Classified Ads 12 the authors first describing them.
    [Show full text]