Resolution Proof Transformation for Compression and Interpolation S.F. Rollini1, R. Bruttomesso2, N. Sharygina1, and A. Tsitovich3 1 University of Lugano, Switzerland fsimone.fulvio.rollini,
[email protected] 2 Atrenta Advanced R&D of Grenoble, France
[email protected] 3 Phonak, Switzerland
[email protected] Abstract. Verification methods based on SAT, SMT, and Theorem Proving often rely on proofs of unsatisfiability as a powerful tool to extract information in order to reduce the overall effort. For example a proof may be traversed to identify a minimal reason that led to unsatisfi- ability, for computing abstractions, or for deriving Craig interpolants. In this paper we focus on two important aspects that concern efficient han- dling of proofs of unsatisfiability: compression and manipulation. First of all, since the proof size can be very large in general (exponential in the size of the input problem), it is indeed beneficial to adopt techniques to compress it for further processing. Secondly, proofs can be manipulated as a flexible preprocessing step in preparation for interpolant computa- tion. Both these techniques are implemented in a framework that makes use of local rewriting rules to transform the proofs. We show that a care- ful use of the rules, combined with existing algorithms, can result in an effective simplification of the original proofs. We have evaluated several heuristics on a wide range of unsatisfiable problems deriving from SAT and SMT test cases. 1 Introduction Symbolic verification methods rely on a representation of the state space as a set of formulae, which are manipulated by formal engines such as SAT- and SMT- arXiv:1307.2028v3 [cs.LO] 15 Apr 2014 solvers.