And Feather Mites (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada

Total Page:16

File Type:pdf, Size:1020Kb

And Feather Mites (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada 139 Chapter 5 Chewing Lice (Insecta: Phthiraptera: Amblycera, Ischnocera) and Feather Mites (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada Terry D. Galloway Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2 Heather C. Proctor Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9 Sergei V. Mironov Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, Saint Petersburg, 199034, Russia Abstract. The diversity of bird species nesting in Canadian grasslands is high, and each of them is host to one or more species of lice and mites. A checklist of feather lice (Phthiraptera: Amblycera, Ischnocera) and feather mites (Acari: Analgoidea, Pterolichoidea) from 160 species of birds that nest in terrestrial and aquatic habitats in the grassland biome in Alberta, Saskatchewan, and Manitoba is provided here. The list includes known and expected records. In total, four families, 54 genera, and 183 named species and subspecies of chewing lice are known to occur on these hosts in the Prairie Provinces. At least an additional 63 species are expected to be found eventually, on the basis of records from these hosts elsewhere in North America. Twenty-seven species in six genera have been collected from hosts with no prior louse records; many of these species are undescribed. For feather mites, 20 families, 73 genera, 134 named species, and 38 undescribed species are known to occur, and an additional 13 genera and 39 species are expected to be found eventually on these hosts in Canadian grasslands. Many populations and species of grassland-breeding birds are endangered in North America, and it is clear that should they be lost, many species of lice and mites would disappear with them. Résumé. De très nombreuses espèces d’oiseaux nichent dans les prairies canadiennes et chacune est l’hôte d’une ou de plusieurs espèces de poux et d’acariens. Ce chapitre présente une liste des espèces connues ou prévues de poux d’oiseaux (Phthiraptera : Amblycera, Ischnocera) et d’acariens (Acari : Analgoidea, Pterolichoidea) répertoriées chez 160 espèces d’oiseaux nichant dans les habitats terrestres ou aquatiques du biome des prairies, en Alberta, en Saskatchewan et au Manitoba. La liste recense au total quatre familles, 54 genres et 183 espèces et sous-espèces décrites. Compte tenu des données recueillies sur les hôtes ailleurs en Amérique du Nord, on s’attend par ailleurs à découvrir 63 espèces supplémentaires de ces insectes. Vingt-sept espèces et six genres ont été répertoriés sur des hôtes au sujet desquels il n’existait aucune donnée concernant les poux d’oiseaux. Plusieurs de ces espèces n’avaient jamais été décrites. S’agissant des acariens, on a confi rmé la présence de 20 familles, 73 genres, 134 espèces décrites et 38 espèces non décrites, et on soupçonne la présence sur les hôtes aviaires des prairies canadiennes de 13 genres et de 39 espèces supplémentaires. Plusieurs des populations et des espèces d’oiseaux qui se reproduisent dans les Prairies sont menacées en Amérique du Nord, et il est clair que si ces espèces venaient à disparaître, de nombreuses espèces de poux et d’acariens disparaîtraient également. Galloway, T. D., H. C. Proctor, and S. V. Mironov. 2014. Chewing Lice (Insecta: Phthiraptera: Amblycera, Ischnocera) and Feather Mites (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada. In Arthropods of Canadian Grasslands (Volume 3): Biodiversity and Systematics Part 1. Edited by H. A. Cárcamo and D. J. Giberson. Biological Survey of Canada. pp. 139-188. © 2014 Biological Survey of Canada. ISBN 978-0-9689321-6-2 doi: http://dx.doi.org/10.3752/9780968932162.ch5 140 T. D. Galloway, H. C. Proctor, and S. V. Mironov Introduction Many birds that are grassland specialists nest only in areas of continuous grass. However, grasslands offer a diversity of additional habitats, including bluffs of trees, coulees, wetlands, pothole lakes, streams, and rivers. In combination, this patchwork supports a considerable diversity of birds that nest in suitable habitat wherever it occurs. Cultivation for agricultural production and fragmentation of grassland ecosystems have had a major impact on the welfare of these nesting birds, and indeed, grassland specialists are among the species most seriously affected by human activity in North America (Herkert 1995). As concerns for conservation of grassland birds increase, our understanding of factors affecting their populations has also increased (Koper and Nudds 2011). Considerable attention has been focused on nesting success as affected by habitat fragmentation, especially related to the impact of predation (see review by Stephens et al. 2003). However, the role played by parasites and other symbionts on breeding success and fi tness in avian populations has largely been ignored. From the time it hatches until it dies, each bird is a fl ying menagerie of associated internal and external symbionts. It experiences a dynamic relationship with mites, lice, fl ies, fl eas, bugs, protists, viruses, nematodes, trematodes, tapeworms, and acanthocephalans (Rothschild and Clay 1953), changing in species and numerical composition depending on the age and fi tness of the host, nature of association with conspecifi cs, season, food, habitat, and attack by arthropod vectors. And of course, this impressive diversity of associates is largely unseen by most people, even many of those who work closely with the birds. Conversely, declining host populations may also play a role in the decline and even the extinction of ectosymbionts, but this aspect of the host–symbiont relationship has received relatively little attention (Rózsa 1992; Koh et al. 2004; Whiteman and Parker 2005) compared with that given to declines and extinctions in bird populations. Considering that each bird is host to such tremendous diversity of symbionts (Rothschild and Clay 1953), it is worthwhile to explore the status of this diversity in grassland birds in Canada. Galloway and Danks (1990) emphasized the defi ciency in our knowledge of ectosymbionts of birds in Canada, especially for feather mites and chewing lice. These two groups are taxonomically and ecologically diverse, with the potential to elucidate important evolutionary and phylogenetic relationships in their hosts (Marshall 1981; Johnson and Clayton 2003; Proctor 2003). Some species (i.e., ectoparasites) may affect the health and fi tness of their hosts, an important consideration for host species at risk. Conversely, a reduction in bird host populations may have a major impact on the survival of host-dependent species of ectosymbionts. There has not been a review of species of these arthropod groups in Canada since Wheeler and Threlfall (1989). Given recent published and unpublished studies on the biodiversity of these important ectosymbionts, it is our objective to summarize the current status of our knowledge about chewing lice and feather mites known or likely to be associated with birds nesting in grasslands in the Canadian Prairie Provinces. Scope of the Study The fi rst challenge in this review was to decide what constitutes a “grassland” bird. We chose to include species that breed within areas of continuous grassland in Manitoba, Saskatchewan, and Alberta, including shortgrass, mixedgrass, and tallgrass prairie, as described by Shorthouse and Larson (2010: Fig. 1). We also include forest birds that breed Chewing Lice (Insecta: Phthiraptera: Amblycera, Ischnocera) and Feather Mites 141 (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada in shrubbery, bluffs, and coulees in grasslands, as well as water birds that breed in and along wetlands and waterways within grassland habitats. Species that migrate through grasslands to nest in the boreal, subarctic, or arctic regions are not included in this survey. Species introduced into North America (e.g., ring-necked pheasant, rock pigeon, house sparrow) are not included, though some do nest in our defi ned habitats in grasslands. Our species list was drawn from various sources, primarily Godfrey (1986), Carey et al. (2003), and Penner (2007). In total, we include lice and mites associated with 160 species of birds that nest in grasslands in Canada. Nomenclature for birds follows the American Ornithologists’ Union (1998 and supplements). Sources of Data Both published and new records for ectosymbionts are included in this review. Nomenclature for chewing lice follows Price et al. (2003). Undescribed louse species are included in our list; where genera are in need of extensive taxonomic revision (e.g., Menacanthus (from Galliformes), Anaticola, Brueelia, Craspedorrhynchus, Philopterus), species names for taxa known to occur on certain bird hosts are assigned on the basis of host association, with the understanding that nomenclatural changes are expected. Nomenclature for feather mites (Acari: Astigmatina: Analgoidea, Pterolichoidea) follows Gaud and Atyeo (1996) with these exceptions: recognition of Pteronyssidae as a family rather than as a subfamily of the Avenzoariidae (Mironov 2001), addition of genera described since 1996 (e.g., Mironov et al. 2007; Valim and Hernandes 2010), and placement of those families previously in the Freyanoidea within the Pterolichoidea (OConnor 2009). Feather mite records include described species, undescribed and clearly new species (indicated by “n. sp.” in tables), and genus-level records for species represented
Recommended publications
  • Checklist of the Mallophaga of North America (North of Mexico), Which Reflects the Taxonomic Studies Published Since That Date
    The Genera and Species of Mallopbaga of North America (North of Mexico) Part II. Suborder AMBLYCERA by K. C. Emerson, PhD. SKgT-SSTcTS'S-? SWW TO M"7-5001 PREFACE This volume is essentially a revision of my 1964 publication, Checklist of the Mallophaga of North America (north of Mexico), which reflects the taxonomic studies published since that date. Host criteria for the birds has been expanded to include consideration of all species listed in The A. 0. U. Checklist of North American Birds. Fifth Edition (1957). A few species of birds definitely known to be extinct are omitted from the listings of probable hosts, even though new species may still be found on museum skins. Mammal hosts considered remain those recorded in Millsr and Kellogg, List of North American Recent Mammals (1955), as; being found north of Mexico. Dr. Theresa Clay, British Museum (Natural History), ar.d especially Dr. Roger D. Price, University of Minnesota, during the last few years, have reviewed several genera of the Menoporidae; however, several of the larger genera are still in need of review. Unfortunately this volume could not be delayed until work on these genera is completed. CONTENTS BOOPIDAE Heterodoxus GYROPIDAE Gliricola Gyropus Macrogyropus Pitrufquenia LAEMOBOTHRIIDAE Laemobothrion MENOPONIDAE A ctornitbophi.lus Arnyrsidea Ancistrona Ardeiphilus Austromenopon Bonomiella Ciconiphilus Clayia Colpocephalum Comatomenopon Cuculiphilus Dennyus Eidmanniella Eucolpocephalum Eureum Fregatiella Gruimenopon Heleonomus Hohorstiella Holomenopon Kurodaia Longimenopon Machaerilaemus Menacanthus Menopon Myrsidea Nosopon Numidicola - Osborniella Piagetiella Plegadiphilus Procellariphaga Pseudomenopon Somaphantus Trinoton RICINIDAE Ricinus Trochiliphagus Trochiloectes TRIMENOPONIDAE Trimenopon Suborder AMBLYCERA Family BOOPIDAE Genus HETERODOXUS Heterodoxus LeSouef and Bullen. 1902. Vict.
    [Show full text]
  • New Data on the Chewing Lice (Phthiraptera) of Passerine Birds in East of Iran
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244484149 New data on the chewing lice (Phthiraptera) of passerine birds in East of Iran ARTICLE · JANUARY 2013 CITATIONS READS 2 142 4 AUTHORS: Behnoush Moodi Mansour Aliabadian Ferdowsi University Of Mashhad Ferdowsi University Of Mashhad 3 PUBLICATIONS 2 CITATIONS 110 PUBLICATIONS 393 CITATIONS SEE PROFILE SEE PROFILE Ali Moshaverinia Omid Mirshamsi Ferdowsi University Of Mashhad Ferdowsi University Of Mashhad 10 PUBLICATIONS 17 CITATIONS 54 PUBLICATIONS 152 CITATIONS SEE PROFILE SEE PROFILE Available from: Omid Mirshamsi Retrieved on: 05 April 2016 Sci Parasitol 14(2):63-68, June 2013 ISSN 1582-1366 ORIGINAL RESEARCH ARTICLE New data on the chewing lice (Phthiraptera) of passerine birds in East of Iran Behnoush Moodi 1, Mansour Aliabadian 1, Ali Moshaverinia 2, Omid Mirshamsi Kakhki 1 1 – Ferdowsi University of Mashhad, Faculty of Sciences, Department of Biology, Iran. 2 – Ferdowsi University of Mashhad, Faculty of Veterinary Medicine, Department of Pathobiology, Iran. Correspondence: Tel. 00985118803786, Fax 00985118763852, E-mail [email protected] Abstract. Lice (Insecta, Phthiraptera) are permanent ectoparasites of birds and mammals. Despite having a rich avifauna in Iran, limited number of studies have been conducted on lice fauna of wild birds in this region. This study was carried out to identify lice species of passerine birds in East of Iran. A total of 106 passerine birds of 37 species were captured. Their bodies were examined for lice infestation. Fifty two birds (49.05%) of 106 captured birds were infested. Overall 465 lice were collected from infested birds and 11 lice species were identified as follow: Brueelia chayanh on Common Myna (Acridotheres tristis), B.
    [Show full text]
  • Phthiraptera, Ischnocera, Philopteridae), with One New Synonymy and a Neotype Designation for Nirmus Lais Giebel, 1874
    Dtsch. Entomol. Z. 66 (1) 2019, 17–39 | DOI 10.3897/dez.66.32423 Redescriptions of thirteen species of chewing lice in the Brueelia- complex (Phthiraptera, Ischnocera, Philopteridae), with one new synonymy and a neotype designation for Nirmus lais Giebel, 1874 Daniel R. Gustafsson1, Lucie Oslejskova2, Tomas Najer3, Oldrich Sychra2, Fasheng Zou1 1 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 105 Xingang West Road, Haizhu District, Guangzhou, 510260, China 2 Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic 3 Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00 Prague 6, Czech Republic http://zoobank.org/8B55AC08-B6EA-4488-8850-26CB8E1A4207 Corresponding author: Daniel R. Gustafsson ([email protected]) Abstract Received 14 December 2018 Accepted 18 January 2019 Thirteen species of chewing lice in the Brueelia-complex are redescribed and illustrat- Published 4 February 2019 ed. They are: Brueelia blagovescenskyi Balát, 1955, ex Emberiza schoeniclus (Linnae- us, 1758); B. breueri Balát, 1955, ex Chloris chloris (Linnaeus, 1758); B. conocephala Academic editor: (Blagoveshchensky, 1940) ex Sitta europaea (Linnaeus, 1758); B. ferianci Balát, 1955, Susanne Randolf ex Anthus trivialis (Linnaeus, 1758); B. glizi Balát, 1955, ex Fringilla montifringilla Linnaeus, 1758; B. kluzi Balát, 1955, ex Fringilla coelebs Linnaeus, 1758; B. kratochvili Balát, 1958, ex Motacilla flava Linnaeus, 1758; B. matvejevi Balát, 1981, ex Turdus Key Words viscivorus Linnaeus, 1758; B.
    [Show full text]
  • Tuhinga Pdf for TPP:Layout 1
    Tuhinga 21: 135–146 Copyright © Museum of New Zealand Te Papa Tongarewa (2010) The species of Myrsidea Waterston (Insecta: Phthiraptera: Menoponidae) from the Galápagos Islands, with descriptions of new taxa Ricardo L. Palma* and Roger D. Price** * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand (ricardop@ tepapa.govt.nz) ** 1409 Burnham Court, Fort Smith, Arkansas 72903, United States of America ([email protected]) ABSTRACT: Three species and one subspecies of lice in the genus Myrsidea are described and illustrated from passerine hosts from the Galápagos Islands. New taxa are: Myrsidea darwini new species (type host Geospiza fuliginosa Gould, Emberizidae); Myrsidea nesomimi nesomimi new species and subspecies (type host Nesomimus macdonaldi Ridgway, Mimidae); and Myrsidea nesomimi borealis new subspecies (type host Nesomimus parvulus (Gould), Mimidae). Myrsidea ridulosa (Kellogg & Chapman) is recorded for the first time in the Galápagos Islands, from Dendroica petechia aureola (Gould) (Parulidae). Myrsidea nesomimi is the first species of Myrsidea described from members of the family Mimidae. KEYWORDS: Phthiraptera, Menoponidae, Myrsidea, lice, new taxa, new record, Galápagos Islands, Darwin’s finches, Galápagos mockingbirds, yellow warbler. Introduction also recognised as belonging to Myrsidea by Clay (1966: 349) and Price et al. (2003: 129). However, our study of The genus Myrsidea Waterston, 1915 is one of the most many samples and specimens of Myrsidea recently collected speciose among lice, comprising species parasitic on hosts from several species of Darwin’s finches, mockingbirds and belonging to the avian orders Passeriformes, Piciformes and the yellow warbler in the Galápagos Islands shows that they Apodiformes. Since the publication of a world checklist by are not M.
    [Show full text]
  • Insecta: Phthiraptera)
    ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI Volume 104 Budapest, 2012 pp. 5–109 A checklist of lice of Hungary (Insecta: Phthiraptera) Z. VAS1*, J. RÉKÁSI2 & L. RÓZSA3 1 Hungarian Natural History Museum, H-1088 Budapest, Baross u. 13, Hungary; Department of Biomathematics and Informatics, Faculty of Veterinary Science, Szent István University, H-1078 Budapest, István u. 2, Hungary. E-mail: [email protected] 2 Pannonhalma Benedictiner School, H-9090 Pannonhalma, Vár 2, Hungary. E-mail: [email protected] 3 MTA-ELTE-MTM Ecology Research Group, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary. E-mail: [email protected] A checklist of louse species and subspecies collected from wild or domestic (exotic pets excluded) birds and mammals including humans in Hungary since 1945 is provided. The list is based on formerly published data and includes 279 louse species and subspecies. Their hosts represent 156 bird and 30 mammal species. Additionally, further 550 louse species (and subspecies) are also listed, whose occurrence is likely as judged from geographic and host distribution but have not been detected yet. This paper presents the most complete review of the Hungarian louse fauna. – Louse, host association, birds, mammals, ectoparasites. INTRODUCTION Hungary’s sucking louse (Phthiraptera: Anoplura) fauna was summa- rized by PIOTROWSKI (1970). The chewing louse (Phthiraptera: Amblycera, Ischnocera) fauna was evaluated in two checklists (RÉKÁSI 1993a, 1994) summarizing data for avian and mammalian hosts separately. Subsequently, more recent world checklists for sucking lice (DURDEN &MUSSER 1994) and for chewing lice (PRICE et al. 2003) critically reviewed the nomenclature, taxonomy and host-parasite relationships of this insect order as a whole.
    [Show full text]
  • Türleri Chewing Lice (Phthiraptera)
    Kafkas Univ Vet Fak Derg RESEARCH ARTICLE 17 (5): 787-794, 2011 DOI:10.9775/kvfd.2011.4469 Chewing lice (Phthiraptera) Found on Wild Birds in Turkey Bilal DİK * Elif ERDOĞDU YAMAÇ ** Uğur USLU * * Selçuk University, Veterinary Faculty, Department of Parasitology, Alaeddin Keykubat Kampusü, TR-42075 Konya - TURKEY ** Anadolu University, Faculty of Science, Department of Biology, TR-26470 Eskişehir - TURKEY Makale Kodu (Article Code): KVFD-2011-4469 Summary This study was performed to detect chewing lice on some birds investigated in Eskişehir and Konya provinces in Central Anatolian Region of Turkey between 2008 and 2010 years. For this aim, 31 bird specimens belonging to 23 bird species which were injured or died were examined for the louse infestation. Firstly, the feathers of each bird were inspected macroscopically, all observed louse specimens were collected and then the examined birds were treated with a synthetic pyrethroid spray (Biyo avispray-Biyoteknik®). The collected lice were placed into the tubes with 70% alcohol and mounted on slides with Canada balsam after being cleared in KOH 10%. Then the collected chewing lice were identified under the light microscobe. Eleven out of totally 31 (35.48%) birds were found to be infested with at least one chewing louse species. Eighteen lice species were found belonging to 16 genera on infested birds. Thirteen of 18 lice species; Actornithophilus piceus piceus (Denny, 1842); Anaticola phoenicopteri (Coincide, 1859); Anatoecus pygaspis (Nitzsch, 1866); Colpocephalum heterosoma Piaget, 1880; C. polonum Eichler and Zlotorzycka, 1971; Fulicoffula lurida (Nitzsch, 1818); Incidifrons fulicia (Linnaeus, 1758); Meromenopon meropis Clay ve Meinertzhagen, 1941; Meropoecus meropis (Denny, 1842); Pseudomenopon pilosum (Scopoli, 1763); Rallicola fulicia (Denny, 1842); Saemundssonia lari Fabricius, O, 1780), and Trinoton femoratum Piaget, 1889 have been recorded from Turkey for the first time.
    [Show full text]
  • Identifying British Insects and Arachnids: an Annotated Bibliography of Key Works Edited by Peter C
    Cambridge University Press 0521632412 - Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works Edited by Peter C. Barnard Index More information Index This index includes all the higher taxonomic categories mentioned in the book, from orders down to families, but page numbers are given only for the main occurrences of those names. It therefore also acts as a complete alphabetic list of the higher taxa of British insects and arachnids (except for the numerous families of mites). Acalyptratae 173, 188 Anyphaenidae 327 Acanthosomatidae 55 Aphelinidae 198, 293, 308 Acari 320, 330 Aphelocheiridae 55 Acartophthalmidae 173, 191 Aphididae 56, 62 Acerentomidae 23 Aphidoidea 56, 61 Acrididae 39 Aphrophoridae 56 Acroceridae 172, 180, 181 Apidae 198, 217 Aculeata 197, 206 Apioninae 83, 134 Adelgidae 56, 62, 64 Apocrita 197, 198, 206, 227 Adelidae 146 Apoidea 198, 214 Adephaga 82, 91 Arachnida 320 Aderidae 83, 126, 127 Aradidae 55 Aeolothripidae 52 Araneae 320, 326 Aepophilidae 55 Araneidae 327 Aeshnidae 31 Araneomorphae 327 Agelenidae 327 Archaeognatha 21, 25, 26 Agromyzidae 173, 188, 193 Arctiidae 146, 162 Alexiidae 83 Argidae 197, 201 Aleyrodidae 56, 67, 68 Argyronetidae 327 Aleyrodoidea 56, 66 Arthropleona 22 Alucitidae 146 Aschiza 173, 184 Alucitoidea 146 Asilidae 172, 180, 181, 182 Alydidae 55, 58 Asiloidea 172, 181 Amaurobiidae 327 Asilomorpha 172, 180, 182 Amblycera 48 Asteiidae 173, 189 Anisolabiidae 41 Asterolecaniidae 56, 70 Anisopodidae 172, 175, 177 Atelestidae 172, 183, 185 Anisopodoidea 172 Athericidae 172, 181 Anisoptera 31 Attelabidae 83, 134 Anobiidae 82, 119 Atypidae 327 Anoplura 48 Auchenorrhyncha 54, 55, 59 Anthicidae 83, 90, 126 Aulacidae 198, 228 Anthocoridae 55, 57, 58 Aulacigastridae 173, 192 Anthomyiidae 173, 174, 186, 187 Anthomyzidae 173, 188 Baetidae 28 Anthribidae 83, 88, 133, 134 Beraeidae 142 © Cambridge University Press www.cambridge.org Cambridge University Press 0521632412 - Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works Edited by Peter C.
    [Show full text]
  • Hastings Slide Collection3
    HASTINGS NATURAL HISTORY RESERVATION SLIDE COLLECTION 1 ORDER FAMILY GENUS SPECIES SUBSPECIES AUTHOR DATE # SLIDES COMMENTS/CORRECTIONS Siphonaptera Ceratophyllidae Diamanus montanus Baker 1895 221 currently Oropsylla (Diamanus) montana Siphonaptera Ceratophyllidae Diamanus spp. 1 currently Oropsylla (Diamanus) spp. Siphonaptera Ceratophyllidae Foxella ignota acuta Stewart 1940 402 syn. of F. ignota franciscana (Roths.) Siphonaptera Ceratophyllidae Foxella ignota (Baker) 1895 2 Siphonaptera Ceratophyllidae Foxella spp. 15 Siphonaptera Ceratophyllidae Malaraeus spp. 1 Siphonaptera Ceratophyllidae Malaraeus telchinum Rothschild 1905 491 M. telchinus Siphonaptera Ceratophyllidae Monopsyllus fornacis Jordan 1937 57 currently Eumolpianus fornacis Siphonaptera Ceratophyllidae Monopsyllus wagneri (Baker) 1904 131 currently Aetheca wagneri Siphonaptera Ceratophyllidae Monopsyllus wagneri ophidius Jordan 1929 2 syn. of Aetheca wagneri Siphonaptera Ceratophyllidae Opisodasys nesiotus Augustson 1941 2 Siphonaptera Ceratophyllidae Orchopeas sexdentatus (Baker) 1904 134 Siphonaptera Ceratophyllidae Orchopeas sexdentatus nevadensis (Jordan) 1929 15 syn. of Orchopeas agilis (Baker) Siphonaptera Ceratophyllidae Orchopeas spp. 8 Siphonaptera Ceratophyllidae Orchopeas latens (Jordan) 1925 2 Siphonaptera Ceratophyllidae Orchopeas leucopus (Baker) 1904 2 Siphonaptera Ctenophthalmidae Anomiopsyllus falsicalifornicus C. Fox 1919 3 Siphonaptera Ctenophthalmidae Anomiopsyllus congruens Stewart 1940 96 incl. 38 Paratypes; syn. of A. falsicalifornicus Siphonaptera
    [Show full text]
  • Insecta: Psocodea: 'Psocoptera'
    Molecular systematics of the suborder Trogiomorpha (Insecta: Title Psocodea: 'Psocoptera') Author(s) Yoshizawa, Kazunori; Lienhard, Charles; Johnson, Kevin P. Citation Zoological Journal of the Linnean Society, 146(2): 287-299 Issue Date 2006-02 DOI Doc URL http://hdl.handle.net/2115/43134 The definitive version is available at www.blackwell- Right synergy.com Type article (author version) Additional Information File Information 2006zjls-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder.
    [Show full text]
  • Türleri Chewing Lice (Phthiraptera)
    Kafkas Univ Vet Fak Derg ARTICLE IN PRESS RESEARCH ARTICLE xx (x): xxx-xxx, 2011 Chewing Lice (Phthiraptera) Species Found On Birds Along the Aras River, Iğdır, Eastern Turkey Bilal DIK * Çağan Hakkı ŞEKERCIOĞLU ** Mehmet Ali KIRPIK *** * University of Selçuk, College of Veterinary Medicine, Department of Parasitology, Alaaddin Keykubat Kampüsü, TR-42075 Konya - TURKEY ** Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, 84112 Utah - USA ** KuzeyDoga Society, İstasyon Mah., İsmail Aytemiz Cad., No. 161, TR--36200, Kars -TURKEY *** Kafkas University, Faculty of Science and Arts, Deparment of Biology, TR-36200 Kars -TURKEY Makale Kodu (Article Code): KVFD-2011-4075 Summary Chewing lice were sampled from the birds captured and ringed between September-October 2009 at the Aras River (Yukarı Çıyrıklı, Tuzluca, Iğdır) bird ringing station in eastern Turkey. Eighty-one bird specimens of 23 species were examined for lice infestation. All lice collected from the birds were placed in separate tubes with 70% alcohol. Louse specimens were cleared in 10% KOH, mounted in Canada balsam on glass slides and identified under a binocular light microscope. Sixteen out of 81 birds examined (19,75%) were infested with at least one chewing louse specimens. A total of 13 louse species were found on birds. These were: Austromenopon durisetosum (Blagoveshtchensky, 1948), Actornithophilus multisetosus (Blagoveshtchensky, 1940), Anaticola crassicornis (Scopoli, 1763), Cummingsiella ambigua (Burmeister, 1838), Menacanthus alaudae (Schrank, 1776), Menacanthus curuccae (Schrank, 1776), Menacanthus eurysternus (Burmeister, 1838), Menacanthus pusillus (Niztsch, 1866), Meromenopon meropis (Clay&Meinertzhagen, 1941), Myrsidea picae (Linnaeus, 1758), Pseudomenopon scopulacorne (Denny, 1842), Rhynonirmus scolopacis (Denny, 1842), and Trinoton querquedulae (Linnaeus, 1758).
    [Show full text]
  • Three Feather Mites(Acari: Sarcoptiformes: Astigmata)
    Journal of Species Research 8(2):215-224, 2019 Three feather mites (Acari: Sarcoptiformes: Astigmata) isolated from Tringa glareola in South Korea Yeong-Deok Han and Gi-Sik Min* Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea *Correspondent: [email protected] We describe three feather mites recovered from a wood sandpiper Tringa glareola that was stored in a -20°C freezer at the Chungnam Wild Animal Rescue Center. These feather mites are reported for the first time in South Korea: Avenzoaria totani (Canestrini, 1978), Ingrassia veligera Oudemans, 1904 and Mon­ tchadskiana glareolae Dabert and Ehrnsberger, 1999. In this study, we provide morphological diagnoses and illustrations. Additionally, we provide partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene as molecular characteristics of three species. Keywords: Avenzoaria totani, COI, feather mite, Ingrassia veligera, Montchadskiana glareolae, wood sandpiper, South Korea Ⓒ 2019 National Institute of Biological Resources DOI:10.12651/JSR.2019.8.2.215 INTRODUCTION is absent in males (Vasjukova and Mironov, 1991). The genus Montchadskiana is one of five genera that The wood sandpiper Tringa glareola (Linnaeus, 1758) belong to the subfamily Magimeliinae Gaud, 1972 and inhabits swamp and marshes (wet heathland, spruce or contains 17 species (Gaud and Atyeo, 1996; Dabert and birch forest) in the northern Eurasian continent (Pulliain- Ehrnsberger, 1999). This genus was found on flight feath- en and Saari, 1991; del Hoyo et al.,
    [Show full text]
  • Co-Extinct and Critically Co-Endangered Species of Parasitic Lice, and Conservation-Induced Extinction: Should Lice Be Reintroduced to Their Hosts?
    Short Communication Co-extinct and critically co-endangered species of parasitic lice, and conservation-induced extinction: should lice be reintroduced to their hosts? L AJOS R ÓZSA and Z OLTÁN V AS Abstract The co-extinction of parasitic taxa and their host These problems highlight the need to develop reliable species is considered a common phenomenon in the current taxonomical knowledge about threatened and extinct global extinction crisis. However, information about the parasites. Although the co-extinction of host-specific conservation status of parasitic taxa is scarce. We present a dependent taxa (mutualists and parasites) and their hosts global list of co-extinct and critically co-endangered is known to be a feature of the ongoing wave of global parasitic lice (Phthiraptera), based on published data on extinctions (Stork & Lyal, 1993; Koh et al., 2004; Dunn et al., their host-specificity and their hosts’ conservation status 2009), the magnitude of this threat is difficult to assess. according to the IUCN Red List. We list six co-extinct Published lists of threatened animal parasites only cover and 40 (possibly 41) critically co-endangered species. ixodid ticks (Durden & Keirans, 1996; Mihalca et al., 2011), Additionally, we recognize 2–4 species that went extinct oestrid flies (Colwell et al., 2009), helminths of Brazilian as a result of conservation efforts to save their hosts. vertebrates (Muñiz-Pereira et al., 2009) and New Zealand Conservationists should consider preserving host-specific mites and lice (Buckley et al., 2012). Our aim here is to lice as part of their efforts to save species. provide a critical overview of the conservation status of parasitic lice.
    [Show full text]