Spatiotemporal Variations of Chinese Lakes and Their Driving Mechanisms Since the Last Glacial Maximum: a Review and Synthesis of Lacustrine Sediment Archives

Total Page:16

File Type:pdf, Size:1020Kb

Spatiotemporal Variations of Chinese Lakes and Their Driving Mechanisms Since the Last Glacial Maximum: a Review and Synthesis of Lacustrine Sediment Archives Review Progress of Projects Supported by NSFC January 2013 Vol.58 No.1: 1731 Geology doi: 10.1007/s11434-012-5510-7 SPECIAL TOPICS: Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives SHEN Ji State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China Received May 24, 2012; accepted September 7, 2012; published online November 22, 2012 In this article, the author provides the first synthesis and classification of available environment-indicating proxies for lacustrine sediment. A review of spatio-temporal variations in lakes from the Tibetan Plateau, the dry areas of Northwestern China, the Yunnan-Guizhou Plateau and the plains of Eastern China since the LGM is then provided. The driving mechanism for variations in lake processes and characteristics is also discussed based on various temporal scales. The author then proposes that future in- vestigations be conducted to: (1) strengthen the study of theoretics and interpretation of environment-indicating proxies, (2) en- hance the study of high-resolution time series and spatial variability of lake environment evolution, (3) provide more attention on the influence of human activities on lake environments, and (4) boost construction of the Quaternary lake database of China. spatiotemporal variation, Chinese lakes, driving mechanism, LGM Citation: Shen J. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives. Chin Sci Bull, 2013, 58: 1731, doi: 10.1007/s11434-012-5510-7 Lakes are normally formed under various geological and people tend to settle around lakes owing to the resources geographical backgrounds. As a component of the terrestrial they provide. hydrosphere, lakes have close relationships with the atmos- phere, biosphere and lithosphere, and serve as the connec- 1 Synthesis and classification of proxies in lacus- tion between these systems. Once a lake is formed, it is in- fluenced by a series of tectonic, climatic and anthropogenic trine sediment describing environmental condi- factors. As a result, lacustrine evolutional processes usually tions involve geological, physical, chemical and biological pro- cesses and the interactions between them, and these pro- Lakes generally have an independent watershed that serves cesses are all documented by lacustrine sediment archives. as a source of water, sediment, biomass and chemicals, Because lakes are widely distributed worldwide and nor- while the lake serves as a sink for all of these materials. mally undergo a long history of evolution, lacustrine sedi- Accordingly, lacustrine sediment can record all information ment generally possesses a continuous record with high- regarding the source-sink interactions and mass balances resolutions that provides abundant information regarding including water balances (watershed rainfall and lake level regional environmental and climatic variations that can be stands), sediment balances (watershed erosion intensity and used in global change studies. Lacustrine sediment also lake sedimentation rate), biological balances (watershed contains information pertaining to human activities, since vegetation and lake biomass) and chemical balances (wa- tershed soluble materials and lake water ion concentrations) [1]. email: [email protected] © The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp 18 Shen J Chin Sci Bull January (2013) Vol.58 No.1 The formation of lakes generally has no zonality; there- Lacustrine sediment proxies can generally be classified fore, lakes are widely distributed around the world, being into three categories: (1) proxies indicating terrestrial (lake present in tropic zones, temperate zones and frigid zones, as catchment) information such as pollen, phytolith, charcoal, well as humid and arid regions and at altitudes ranging from grain size, susceptibility, etc.; (2) proxies indicating lake 5000 m above sea level (a.s.l.) (such as lakes on the Tibetan water environmental conditions including micro-fossils (di- Plateau) to −155 m a.s.l. (such as Lake Aiding) [2]. Never- atoms, ostracods, chironomids, cladocera, macroplant- theless, once a lake is formed, its physical, chemical and fossils, etc.), pigment, authigenic carbonate and stable car- biological processes differentiate according to the zone it is bon and oxygen isotopes of the authigenic carbonate, ele- located in, and they normally possess notable regional mental ratio and isotopes of biological shells, etc.; and (3) characteristics. Therefore, to understand the relationship proxies indicating multi-source information pertaining to between zonality and lake evolution, it is essential to select the lake-catchment system including total organic carbon suitable environment-indicating proxies; however, the in- (TOC), total nitrogen (TN), organic carbon isotopes, etc. [1]. terpretation of such proxies is often specific and not Nevertheless, the classification of the proxies is not absolute, straightforward. To clarify the interpretation of physical, because proxy-indicating catchment information can also chemical and biological proxies, case studies for specific incorporate information pertaining to inner-lake alterations lakes must be conducted to investigate the modern process- such as diagenesis. Accordingly, interpretation of proxies is es of their watershed-lake system. Only with suitable prox- often complicated. ies and case-specific interpretation can the regional envi- ronmental evolutions be correctly characterized. For exam- ple, lakes on the Tibetan Plateau are generally characterized 2 Spatiotemporal variations of Chinese lakes by closed or semi-closed lake basins with saline or brackish since the Last Glacial Maximum (LGM) waters; accordingly, the water balance is usually controlled by the precipitation/evaporation ratios, which also influence From west to east, Chinese topography is characterized by the evolution of hydrophyte communities. Therefore, for the so-called “three-step ladders”, which were formed by these lakes, suitable proxies are chemical and biological tectogenesis. The first-step ladder is the notably uplifted factors that can indicate changes in the salinity of the water Tibetan Plateau, which is circled by higher mountains con- they contain. Conversely, lakes in Eastern China generally taining deep canyons on the outer mountainside. The inner have outward flows, and their lake-catchment systems are plateau topography consists of mountains, valleys and ba- usually characterized by high biomass productivity. There- sins, with lakes along fracture zones. These lakes consist of fore, suitable proxies for these lakes are biochemical factors saline or brine with closed or semi-closed basins and fresh- that can indicate the biomass productivity of the lake- water lakes with intermountain basins produced by glacier catchment system and cycling of the nutrient elements. erosion or river-headward erosion. The Tibetan Plateau is Lakes in the Yunnan-Guizhou Plateau are normally charac- very lake-concentrated, with a total lake surface area that terized by lake-catchment systems with great biodiversity accounts for 49.5% of that of China. Most lakes now have and obvious vertical (altitudinal) biozonality; thus, the suit- deep water and long histories. The Hengduan Mountains are able proxies should be biochemical factors that can indicate the transitional zone of the first- and second-step ladders, evolutions of watershed vegetation and lake hydroenviron- and are characterized by high mountains and deep canyons ment. with diverse elevations. Lakes of this area are often situated Lacustrine sediment is generally derived from alloch- in steep and deep depression basins, and some are dammed thonous and authigenic sources. The former is from materi- lakes caused by landslides and/or debris flows. The sec- als produced by catchment erosion, while the latter is from ond-step ladder is characterized by plateaus and basins lake water precipitation due to various biochemical pro- caused by differential elevations of land masses, which al- cesses. The catchment erosion rate is related to the geology lows for tectonically-derived depression lakes. When com- of the watershed and lake water deposit is related to the pared with the first-step ladder, the second-step ladder is inner-lake biological and hydrochemical factors. Both of characterized by tectonic movements with lower intensities these sources have a close relationship with climatic chang- and amplitudes. As a result the lakes on the second-step es. Hence, besides abrupt tectonic movements and human ladder usually have continuously sinking lake basins, such activities, climate is the only key factor that influences la- as Lake Dianchi, Erhai, Lugu on the Yunnan-Guizhou Plat- custrine sediment formations. Therefore, studying a certain eau and Lake Daihai and Huangqihai on the Mongolia Plat- layer of the sedimentary core can provide information re- eau. The third-step ladder consists of the extensive plains in garding the climatic and environmental conditions for a Eastern China and is characterized by an overall sinking certain period. Moreover, investigating the entire section of topography. Lakes on this ladder are often formed by river the sedimentary core can enable deduction of climatic
Recommended publications
  • Chemical Evolution of Nb-Ta Oxides and Cassiterite in Phosphorus-Rich
    minerals Article Chemical Evolution of Nb-Ta Oxides and Cassiterite in Phosphorus-Rich Albite-Spodumene Pegmatites in the Kangxiwa–Dahongliutan Pegmatite Field, Western Kunlun Orogen, China Yonggang Feng 1,2,* , Ting Liang 1,2,*, Xiuqing Yang 1,2, Ze Zhang 1,2 and Yiqian Wang 1,2 1 School of Earth Science and Resources, Chang’an University, Xi’an 710054, China; [email protected] (X.Y.); [email protected] (Z.Z.); [email protected] (Y.W.) 2 Laboratory of Mineralization and Dynamics, Chang’an University, Xi’an 710054, China * Correspondence: [email protected] (Y.F.); [email protected] (T.L.) Received: 30 January 2019; Accepted: 2 March 2019; Published: 8 March 2019 Abstract: The Kangxiwa–Dahongliutan pegmatite field in the Western Kunlun Orogen, China contains numerous granitic pegmatites around a large granitic pluton (the Dahongliutan Granite with an age of ca. 220 to 217 Ma), mainly including barren garnet-, tourmaline-bearing pegmatites, Be-rich beryl-muscovite pegmatites, and Li-, P-rich albite-spodumene pegmatites. The textures, major element contents, and trace element concentrations of columbite-group minerals (CGM) and cassiterite from three albite-spodumene pegmatites in the region were investigated using a combination of optical microscopy, SEM, EPMA and LA-ICP-MS. The CGM can be broadly classified into four types: (1) inclusions in cassiterite; (2) euhedral to subhedral crystals (commonly exhibiting oscillatory and/or sector zoning and coexisting with magmatic cassiterite); (3) anhedral aggregates; (4) tantalite-(Fe)-ferrowodginite (FeSnTa2O8) intergrowths. The compositional variations of CGM and cassiterite are investigated on the mineral scale, in individual pegmatites and within the pegmatite group.
    [Show full text]
  • Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental Ph Homeostasis by Metagenomics
    Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental pH Homeostasis by Metagenomics Dissertation for the award of the degree "Doctor of Philosophy" Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program in Biology of the Georg-August University School of Science (GAUSS) Submitted by Soumya Biswas from Ranchi (India) Göttingen, 2016 Thesis Committee Prof. Dr. Rolf Daniel Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Michael Hoppert Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Members of the Examination Board Reviewer: Prof. Dr. Rolf Daniel, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Second Reviewer: PD Dr. Michael Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Further members of the Examination Board: Prof. Dr. Burkhard Morgenstern, Department of Bioinformatics, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Fabian Commichau, Department of General Microbiology,
    [Show full text]
  • Lake Status Records from China: Data Base Documentation
    Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13
    [Show full text]
  • The Moho Beneath Western Tibet: Shear Zones and Eclogitization in the Lower Crust ∗ Zhongjie Zhang A,1, Yanghua Wang B, Gregory A
    Earth and Planetary Science Letters 408 (2014) 370–377 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust ∗ Zhongjie Zhang a,1, Yanghua Wang b, Gregory A. Houseman c, , Tao Xu a, Zhenbo Wu a, Xiaohui Yuan d, Yun Chen a, Xiaobo Tian a, Zhiming Bai a, Jiwen Teng a a Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China b Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK c School of Earth and Environment, University of Leeds, LS2 9JT, UK d GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany a r t i c l e i n f o a b s t r a c t Article history: The Tibetan Plateau is formed by continuing convergence between Indian and Asian plates since ∼50 Ma, Received 11 July 2014 involving more than 1400 km of crustal shortening. New seismic data from western Tibet (the TW-80 Received in revised form 10 October 2014 ◦ experiment at 80 E) reveal segmentation of lower crustal structure by the major sutures, contradicting Accepted 13 October 2014 the idea of a mobile lower crust that flows laterally in response to stress variations. Significant changes Available online xxxx in crustal structure and Moho depth occur at the mapped major tectonic boundaries, suggesting that Editor: A. Yin zones of localized shear on sub-vertical planes extend through the crust and into the upper mantle. Keywords: Converted waves originating at the Moho and at a shallower discontinuity are interpreted to define a Tibetan Plateau partially eclogitized layer that extends 200 km north of the Indus–Yarlung Suture Zone, beneath the Moho segmentation entire Lhasa block at depths of between 50 and 70 km.
    [Show full text]
  • Research Article Triassic-Jurassic Granitoids and Pegmatites From
    GeoScienceWorld Lithosphere Volume 2020, Article ID 7282037, 22 pages https://doi.org/10.2113/2020/7282037 Research Article Triassic-Jurassic Granitoids and Pegmatites from Western Kunlun-Pamir Syntax: Implications for the Paleo-Tethys Evolution at the Northern Margin of the Tibetan Plateau 1,2 1 3,4 1 1 Xiao-Qiang Liu , Chuan-Lin Zhang , Haibo Zou, Qian Wang, Xiao-Shu Hao, 5 1 Hai-Xiang Zhao, and Xian-Tao Ye 1College of Oceanography, Hohai University, Nanjing 210098, China 2School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China 3Department of Geosciences, Auburn University, Auburn, AL 36849, USA 4State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China 5School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China Correspondence should be addressed to Chuan-Lin Zhang; [email protected] Received 7 March 2020; Accepted 5 December 2020; Published 31 December 2020 Academic Editor: Alexander R. Simms Copyright © 2020 Xiao-Qiang Liu et al. Exclusive Licensee GeoScienceWorld. Distributed under a Creative Commons Attribution License (CC BY 4.0). The Western Kunlun-Pamir-Karakorum (WKPK) at the northwestern Tibetan Plateau underwent long-term terrane accretion from the Paleozoic to the Cenozoic. Within this time span, four phases of magmatism occurred in WKPK during the Early Paleozoic, Triassic-Jurassic, Early Cretaceous, and Cenozoic. These voluminous magmatic rocks contain critical information on the evolution of the Tethys Oceans. In this contribution, we provide field observations, petrography, ages, whole-rock elemental and Sr-Nd isotopic compositions, and zircon in situ Lu-Hf isotopes of the Triassic-Jurassic granitoids and pegmatites from the Dahongliutan in Western Kunlun and Turuke area at the Pamir Plateau, in an attempt to constrain their petrogenesis and to decipher a more detailed Paleo-Tethys evolution process.
    [Show full text]
  • Age and Origin of High Ba–Sr Appinite–Granites at the Northwestern
    Available online at www.sciencedirect.com Gondwana Research 13 (2008) 126–138 www.elsevier.com/locate/gr Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt ⁎ Hai-Min Ye a, Xian-Hua Li b, Zheng-Xiang Li c, Chuan-Lin Zhang a, a Nanjing Institute of Geology and Mineral Resources, China Geological Survey, Nanjing 210016, China b Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China c Institute of Geoscience Research (TIGeR), Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia Received 10 May 2007; received in revised form 3 August 2007; accepted 5 August 2007 Available online 7 September 2007 Abstract The Buya appinite–granite is a typical high Ba–Sr granite emplaced at the northern West Kunlun orogenic belt along the northwestern margin of the Tibetan Plateau. The granite is dated at ca. 430 Ma using the SHRIMP U–Pb zircon method. It consists of alkaline feldspar granites with coeval appinite enclaves. The granite possesses high SiO2 (69.77–72.69%), K2O (4.44–5.10%) and total alkalinity (K2O+Na2O=8.80–9.92%), Sr (655–1100 ppm), Ba (1036–1433 ppm) and LREE, and low HREE and HFSE contents and insignificant negative Eu anomalies. Consequently, # the samples have very high Sr/Y (74–141) and (La/Yb)N (37–96) ratios. On the other hand, they have low MgO (or Mg ), Cr and Ni contents and low radiogenic Nd isotopes (ɛNd(T)=−8.4 to −10.4).
    [Show full text]
  • Raipur Kala and Tested Positive for the Disease
    ) ' 9,"2 # + : + : : RNI Regn. No. CHHENG/2012/42718, Postal Reg. No. - RYP DN/34/2013-2015 ,*214:;< *+,-,*- .*/0! +*/&1 2."6 7-( 1=7 1- -7% 1 (77,(,0(67(10 0 <7 721011( 2 , > ,1 27 = 21=1>=2( @6* 7 0,* ,!4 (1 (1 20( 1 -1( (10 =(11> ?1=11 .)*9&% !54 ;1."#1 % ' = ' >& ," . # " + " "# ranab Mukherjee was never A people’s leader, he loved that a journalist was not sup- tinguished India? I have called the only 22 *.") " Pa domineering presence in adda (idle talk) which Bengalis posed to sleep, or even have gathering one I know. I hope you groom Bengal politics; in fact, he was enjoy for hours at end. This was dinner, by 10 pm, he said he seated some others #+ hardly a political presence in a daily source of inspiration normally came home around overlooking after 243,,1 )234 his home State at all. But his degree skills, she reinducted nomic matters. and provided an opportunity to this hour, had a bath, did puja the Mogul you.” endearing persona and mag- him into the Cabinet and party Many were initially sur- rummage through his phe- for an hour, before sitting down Gardens was an ," ." nificent erudition made him, hierarchy. prised that a man who rose nomenal memory, which for dinner. He walked me to the honour I will notwithstanding his strong Very soon, ditto with Rajiv from the ranks of a school- stunned friend and foe alike. sitting area and over two cups probably never " rural Bengali accent, a highly Gandhi who unceremoniously teacher in Midnapore, West On a personal note, I recall of coffee we resumed our adda.
    [Show full text]
  • (West Tibet) Mafic Rocks and Granite Resulting from Cretaceous Jinsha Subduction
    *Highlights • Lungmu Co (west Tibet) mafic rocks and granite resulting from Cretaceous Jinsha subduction. • Cooling in the early Upper Cretaceous and final exhumation in Paleocene. • Paleocene NW Tibet uplift as a far field effect of India/Eurasia collision. *Graphical Abstract Section A Field observations S 7000 K1C11 Active LMC fault K1C21 6500 LMC fault zone Mangtsa leucogranite K1C20 80°E8 81°E 116.9±1 Ma 6000 0°E 50 km ? Altitude (m) Tianshuihai 5500 N 5000 Aksai Gozha L. 35°N Chin KUNLUN BLOCK 2 km ult a fa ozh GGozha fault Mafic rocks geochemistry 35°N 1000.0 B 100.0 Lo e qzung Rang 10.0 KunKun LLunun BBlocklock 1.0 TianshuihaiTianshuihai terraneterrane Lungmu Co samples/MOR 0.1 Ba Rb K Th Ta Nb La Ce P Nd Sm Zr Hf Eu Ti Tb Dy Y Y b Cretaceous supra subduction setting lt fau QiangQQiangQiaianngg TangT TangTaanngg BlockB BlockBlolockck u Co FIg.2a gm K1L38 -50 LungmuLunLungmu Co LungmuCo fault fault Co Range 900 Upper Cretaceous magmatism andcoolingK1L26 K1L25 K1L24 800 Cooling history34°N QIANGTANG BLOCKU/Pb zircon - volcanic rock U/Pb zircon - plutonic rock 700 Ar/Ar muscovite biotite K-feldsparPaleocene cooling K1L17 K1C21 6 00 U/He zircon apatite linked with Tibet uplift Quaternary K89G181 500Fault Ice cap K1C11 slow cooling since ~55 Ma East LungmuCenozoic Co range 400 Lake K1C20 Temperature (°C) structural K1C20 Cretaceous 300 mu Northwest Tibet trend Jurassic 200 K1L24 River1 K1C21 Triasic 100granite K1L23 2 Road India-Asia Deformationin Paleozoic Carboniferous-Permian 0 collision northernTibet 0 5 0152025303540 45 50 55 60 65 70 75 80 85 90 95 100 105110120 KunLun bock QiangTang block Time (Ma) *Manuscript Click here to view linked References p.1 1 1 Successive deformation episodes along the Lungmu Co zone, west-central 2 3 2 Tibet.
    [Show full text]
  • Variable Structural Style Along the Karakoram Fault Explained Using Triple-Junction Analysis of Intersecting Faults
    Variable structural style along the Karakoram fault explained using triple-junction analysis of intersecting faults N.S. Raterman* E. Cowgill Department of Geology, University of California, Davis, California 95616-8605, USA Ding Lin Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China ABSTRACT Co fault system likely initiated between 10 and small (<100-km-long) faults and have been geo- 3 Ma to accumulate 25–32 km of total left sep- graphically restricted to the San Andreas and Structural style along the active, NW-strik- aration. We suggest that the Gozha–Longmu Red River fault systems. In addition, the origin, ing, right-slip Karakoram fault in western Co fault system formed during late Miocene and thus general kinematic signifi cance of fault Tibet ranges from transpression in the north to Pliocene structural reorganization of the junctions such as that defi ned by the intersection (37° to 34°N) to transtension in the south (34° southwestern Altyn Tagh and southern Kara- of the San Andreas and Garlock faults, remains to 32°N). This transition in structural style koram fault systems to allow eastward migra- an open question (e.g., Bohannon and Howell occurs at a 27-km-wide bend in the fault. Our tion of the Tibetan Plateau and northward 1982; Spotila and Anderson, 2004). This defi - new neotectonic mapping has documented migration of the Pamir syntaxis. ciency in the understanding of the geometric the long-asserted structural linkage between and kinematic evolution of intersecting major the ENE-striking Gozha–Longmu Co fault Keywords: strike-slip faults, Himalayan orog- faults warrants further investigation of natural system and the similarly oriented active, left- eny, kinematics, fault zones, triple junctions.
    [Show full text]
  • Xiao Et Al..Fm
    International Geology Review, Vol. 45, 2003, p. 303¡ª¡-328. Copyright © 2003 by V. H. Winston & Son, Inc. All rights reserved. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia WENJIAO XIAO,1 Key Laboratory of Lithosphere Tectonic Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China FANGLIN HAN, Shaanxi Institute of Geology Survey, Xianyang 712000, Shaanxi, China BRIAN F. WINDLEY, Department of Geology, University of Leicester, Leicester LE1 7RH, United Kingdom CHAO YUAN, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China HUI ZHOU, Bureau of Science and Technology, Peking University, Beijing 100871, China AND JILIANG LI Key Laboratory of Lithosphere Tectonic Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China Abstract The Western Kunlun Range in northwestern Tibet records a history of enlargement of the Central Asian crust. In the Early Ordovician a south-dipping intra-oceanic subduction-accretion complex was accreted to the Tarim block, forming an Andean-type margin in the Late Ordovician. This mar- gin grew southward (present-day coordinates) in the Early Silurian, with an accretionary complex on its southern side against which the Kudi gneiss-schist complex was attached. Clastic sediments continued to infill forearc/intra-arc basins on the top of the arc-accretionary complexes during Devo- nian–Carboniferous time. In the Early to Mid-Carboniferous, tectonic and magmatic quiescence is indicated by an absence of volcanic and plutonic rocks in the Kudi area, whereas subduction was still active in the western part of the range in the Gaz area near the present-day Pamir syntaxis.
    [Show full text]
  • Bhopal on August He Also Distributed Food Pack- All Possible Help
    8,"1 # + 9 + 9 9 RNI Regn. No. MPENG/2004/13703, Regd. No. L-2/BPLON/41/2006-2008 ,*142:;< ! "#"!#$ %!&'( !&)* 1."5 6-( 0=6 0- -6% 0 (66,(,/(56(0/ / <6 610/00( 1 , > ,0 16 = 10=0>=1( @5* 6 /,* ,!3 (0 (0 1/( 0 -0( (0/ =(00> ?0=00 : 6)*9 % !; :0."#0 "!' 0 ' =& 9 ," . # " + " "# 11 ranab Mukherjee was never A people’s leader, he loved that a journalist was not sup- tinguished India? I have called the only Pa domineering presence in adda (idle talk) which Bengalis posed to sleep, or even have gathering one I know. I hope you groom *.") " Bengal politics; in fact, he was enjoy for hours at end. This was dinner, by 10 pm, he said he seated some others #+ hardly a political presence in a daily source of inspiration normally came home around overlooking after 123,,4 )132 his home State at all. But his degree skills, she reinducted nomic matters. and provided an opportunity to this hour, had a bath, did puja the Mogul you.” endearing persona and mag- him into the Cabinet and party Many were initially sur- rummage through his phe- for an hour, before sitting down Gardens was an ," ." nificent erudition made him, hierarchy. prised that a man who rose nomenal memory, which for dinner. He walked me to the honour I will notwithstanding his strong Very soon, ditto with Rajiv from the ranks of a school- stunned friend and foe alike. sitting area and over two cups probably never " rural Bengali accent, a highly Gandhi who unceremoniously teacher in Midnapore, West On a personal note, I recall of coffee we resumed our adda.
    [Show full text]
  • Addis Ababa University School of Graduate Studies
    ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES Metagenomic Exploration of Ethiopian Soda Lake Sediments: Microbial Diversity and Community Structure By Mesfin Tafesse Gemeda A Thesis Submitted to The Department of Microbial, Cellular and Molecular Biology and Presented to the School of Graduate Studies of the Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in Biology (Applied Microbiology) July, 2014 1 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES Metagenomic Exploration of Ethiopian Soda Lake Sediments: Microbial Diversity and Community Structure By Mestin Tafesse Gemeda ~ Presellted to tlte ScllOOI oJ Graduate Studies oJthe Addis Ababa Ulliversity ill Partial - nI oj the Requiremellts Jor the Degree oj Doctor oj PhilosopllY ill Biology (Applied _:n=)o, ogy) __"",~db~ Examining Board: arne Signature (Advisor) ~~~~~=-~+-___ fr.mcis Mulaa (Examiner) --''4~~0~~--­ -assil Assefa (Exami ner) -.f-.~t:.,Ji4--Ac-_-­ -assil A s sefa (Chairman) -+i~P;f!.4=----- 2 Acknowledgements The work presented in this PhD thesis has been carried out at the Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Ethiopia. Funding for laboratory bench has been supported at various times from University of Western Cape, South Africa and University of Copenhagen, Denmark. Addis Ababa science and Technology University, my current host University, has also supported my PhD study to persist to the end while pay ing my fulltime salary. I am thankful to Dr. Amare Gessesse to support the primary phase of my PhD work on 16S rRNA clone library construction for Chitu and Shalla Lakes through the trilateral collaborative NUFU funded project between Addis Ababa University, Institute of Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, South Africa, and University of Bergen, Norway.
    [Show full text]