Airplane Flying Handbook (FAA-H-8083-3B) Chapter 6
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle. -
The Discovery of the Sea
The Discovery of the Sea "This On© YSYY-60U-YR3N The Discovery ofthe Sea J. H. PARRY UNIVERSITY OF CALIFORNIA PRESS Berkeley • Los Angeles • London Copyrighted material University of California Press Berkeley and Los Angeles University of California Press, Ltd. London, England Copyright 1974, 1981 by J. H. Parry All rights reserved First California Edition 1981 Published by arrangement with The Dial Press ISBN 0-520-04236-0 cloth 0-520-04237-9 paper Library of Congress Catalog Card Number 81-51174 Printed in the United States of America 123456789 Copytightad material ^gSS3S38SSSSSSSSSS8SSgS8SSSSSS8SSSSSS©SSSSSSSSSSSSS8SSg CONTENTS PREFACE ix INTROn ilCTION : ONE S F A xi PART J: PRE PARATION I A RELIABLE SHIP 3 U FIND TNG THE WAY AT SEA 24 III THE OCEANS OF THE WORI.n TN ROOKS 42 ]Jl THE TIES OF TRADE 63 V THE STREET CORNER OF EUROPE 80 VI WEST AFRICA AND THE ISI ANDS 95 VII THE WAY TO INDIA 1 17 PART JJ: ACHJF.VKMKNT VIII TECHNICAL PROBL EMS AND SOMITTONS 1 39 IX THE INDIAN OCEAN C R O S S T N C. 164 X THE ATLANTIC C R O S S T N C 1 84 XJ A NEW WORT D? 20C) XII THE PACIFIC CROSSING AND THE WORI.n ENCOMPASSED 234 EPILOC.IJE 261 BIBLIOGRAPHIC AI. NOTE 26.^ INDEX 269 LIST OF ILLUSTRATIONS 1 An Arab bagMa from Oman, from a model in the Science Museum. 9 s World map, engraved, from Ptolemy, Geographic, Rome, 1478. 61 3 World map, woodcut, by Henricus Martellus, c. 1490, from Imularium^ in the British Museum. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Two Worked out Examples of Rotations Using Quaternions
TWO WORKED OUT EXAMPLES OF ROTATIONS USING QUATERNIONS This note is an attachment to the article \Rotations and Quaternions" which in turn is a companion to the video of the talk by the same title. Example 1. Determine the image of the point (1; −1; 2) under the rotation by an angle of 60◦ about an axis in the yz-plane that is inclined at an angle of 60◦ to the positive y-axis. p ◦ ◦ 1 3 Solution: The unit vector u in the direction of the axis of rotation is cos 60 j + sin 60 k = 2 j + 2 k. The quaternion (or vector) corresponding to the point p = (1; −1; 2) is of course p = i − j + 2k. To find −1 θ θ the image of p under the rotation, we calculate qpq where q is the quaternion cos 2 + sin 2 u and θ the angle of rotation (60◦ in this case). The resulting quaternion|if we did the calculation right|would have no constant term and therefore we can interpret it as a vector. That vector gives us the answer. p p p p p We have q = 3 + 1 u = 3 + 1 j + 3 k = 1 (2 3 + j + 3k). Since q is by construction a unit quaternion, 2 2 2 4 p4 4 p −1 1 its inverse is its conjugate: q = 4 (2 3 − j − 3k). Now, computing qp in the routine way, we get 1 p p p p qp = ((1 − 2 3) + (2 + 3 3)i − 3j + (4 3 − 1)k) 4 and then another long but routine computation gives 1 p p p qpq−1 = ((10 + 4 3)i + (1 + 2 3)j + (14 − 3 3)k) 8 The point corresponding to the vector on the right hand side in the above equation is the image of (1; −1; 2) under the given rotation. -
Tail Strikes: Prevention Regardless of Airplane Model, Tail Strikes Can Have a Number of Causes, Including Gusty Winds and Strong Crosswinds
Tail Strikes: Prevention Regardless of airplane model, tail strikes can have a number of causes, including gusty winds and strong crosswinds. But environmental factors such as these can often be overcome by a well-trained and knowledgeable flight crew following prescribed procedures. Boeing conducts extensive research into the causes of tail strikes and continually looks for design solutions to prevent them, such as an improved elevator feel system. Enhanced preventive measures, such as the tail strike protection feature in some by Capt. Dave Carbaugh, Chief Pilot, Boeing 777 models, further reduce the probability of incidents. Flight Operations Safety Tail strikes can cause significant damage and cost taiL strikes: an overview a constant feel elevator pressure, which has operators millions of dollars in repairs and lost reduced the potential of varied feel pressure revenue. In the most extreme scenario, a tail strike A tail strike occurs when the tail of an airplane on the yoke contributing to a tail strike. The can cause pressure bulkhead failure, which can strikes the ground during takeoff or landing. 747-400 has a lower rate of tail strikes than ultimately lead to structural failure; however, long Although many tail strikes occur on takeoff, most the 747-100/-200/-300. shallow scratches that are not repaired correctly occur on landing. Tail strikes are often due to In addition, some 777 models incorporate a tail can also result in increased risks. Yet tail strikes can human error. strike protection system that uses a combination be prevented when flight crews understand their Tail strikes can cause significant damage to of software and hardware to protect the airplane. -
OFFICIAL AUSTRALIAN BASEBALL RULES 6Th EDITION
AUSTRALIAN BASEBALL OFFICIAL BASEBALL RULES AUSTRALIAN BASEBALL OFFICIAL AUSTRALIAN BASEBALL RULES 6th EDITION Copyright © Australian Baseball Federation All content contained within the Official Australian Baseball Rules is copyrighted to the Australian Baseball Federation and outlines the rules under which the sport of baseball is played and officiated in Australia. At no time should any information contained within the Official Australian Baseball Rules be replicated and/or amended without written permission from the Australian Baseball Federation; nor should any information contained within the Official Australian Baseball Rules be utilised by any third party for commercial gain. To purchase a printed hard cover copy of the Rule Book please contact the Australian Baseball Federation ( www.baseball.com.au ) or 07 5510 6800. AUSTRALIAN BASEBALL OFFICIAL BASEBALL RULES Table of Contents 1.00 Objectives of the Game 1.01 The Game .......................................................... 1 1.02 The Objective .......................................................... 1 1.03 The Winner .......................................................... 1 1.04 The Playing Field .......................................................... 1 1.05 Home Plate .......................................................... 2 1.06 The Bases .......................................................... 2 1.07 The Pitcher’s Plate .......................................................... 2 1.08 The Home Club ......................................................... -
The Future of the Knot As a Unit of Speed
FORUM The Future of the Knot as a Unit of Speed Oliver Stewart FEW will deny the merits of the knot as a unit of speed. It does in one syllable what all other units of speed take three or more to do. It is accepted and used by a great many countries, including those like France which show a general pre- ference for the metric system. Aviation has taken to it as well as shipping. It is not therefore surprising that the full acceptance of the Systeme International d'Unitis (or S.I.) is meeting with some opposition when it offers to supplant the knot. At present the situation is that the knot is to continue for a 'limited time' as a speed unit for use in aviation and shipping. Just how limited the time will be has not been revealed, but the member countries of the European Economic Com- munity have set i January 1978 as the date after which 'only a prescribed system of metric units may be used'. Strictly interpreted the S.I. admits one and only one speed unit, the metre per second; if the minute or the hour were to be intro- duced in place of the second, decimalization would break down. This would mean that the familiar kilometre per hour would be inadmissible as a substitute for the knot, although the present trend is in that direction. Both the metre and the second are now denned in terms of atomic radiation with a precision far ahead of anything previously known and give the measurer the highest attainable accuracy. -
Circular Motion and Newton's Law of Gravitation
CIRCULAR MOTION AND NEWTON’S LAW OF GRAVITATION I. Speed and Velocity Speed is distance divided by time…is it any different for an object moving around a circle? The distance around a circle is C = 2πr, where r is the radius of the circle So average speed must be the circumference divided by the time to get around the circle once C 2πr one trip around the circle is v = = known as the period. We’ll use T T big T to represent this time SINCE THE SPEED INCREASES WITH RADIUS, CAN YOU VISUALIZE THAT IF YOU WERE SITTING ON A SPINNING DISK, YOU WOULD SPEED UP IF YOU MOVED CLOSER TO THE OUTER EDGE OF THE DISK? 1 These four dots each make one revolution around the disk in the same time, but the one on the edge goes the longest distance. It must be moving with a greater speed. Remember velocity is a vector. The direction of velocity in circular motion is on a tangent to the circle. The direction of the vector is ALWAYS changing in circular motion. 2 II. ACCELERATION If the velocity vector is always changing EQUATIONS: in circular motion, THEN AN OBJECT IN CIRCULAR acceleration in circular MOTION IS ACCELERATING. motion can be written as, THE ACCELERATION VECTOR POINTS v2 INWARD TO THE CENTER OF THE a = MOTION. r Pick two v points on the path. 2 Subtract head to tail…the 4π r v resultant is the change in v or a = 2 f T the acceleration vector vi a a Assignment: check the units -vi and do the algebra to make vf sure you believe these equations Note that the acceleration vector points in 3 III. -
Mind Your Aviation Language – What Knot Mark Twain!
Mind Your (Aviation) Language…. What Knot? Mark Twain! As aviators we are all familiar with keeping an eye on our airspeed – and that we measure airspeed in knots. Many will also know that a knot is 1 nautical mile per hour. And some will know that a nautical mile is one minute (one sixtieth) of a degree of latitude, or even 1,852 metres. But why do we use the word ‘knot’ and does it have any connection to knots in ropes? Until the mid-19th century, vessel speed at sea was measured using a chip log. This consisted of a wooden panel, attached by line to a reel, and weighted on one edge to float perpendicularly to the water surface and thus present substantial resistance to the water moving around it. The chip log was cast over the stern of the moving vessel and the line allowed to pay out. Knots placed at a distance of 47 feet 3 inches (14.4018 m) from each other, passed through a sailor's fingers, while another sailor used a 30-second sand- glass (28-second sand-glass is the currently accepted timing) to time the operation. The knot count would be reported and used in the sailing master's dead reckoning and navigation. This method gives a value for the knot of 20.25 in/s, or 1.85166 km/h. The difference from the modern definition is less than 0.02%. And in both today’s pilothouse and cockpit, the speed equal to one nautical mile an hour is still called a knot, and pilots still record details of the journey in the ship’s log - terms that echo of the days when crewmembers got creative with a few simple materials and produced an essential and significant little gadget. -
The Dynamics of Inattention in the (Baseball) Field
DISCUSSION PAPER SERIES IZA DP No. 14440 The Dynamics of Inattention in the (Baseball) Field James Archsmith Anthony Heyes Matthew Neidell Bhaven Sampat JUNE 2021 DISCUSSION PAPER SERIES IZA DP No. 14440 The Dynamics of Inattention in the (Baseball) Field James Archsmith Matthew Neidell University of Maryland Columbia University, NBER and IZA Anthony Heyes Bhaven Sampat University of Ottawa and University of Columbia University and NBER Exeter JUNE 2021 Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. ISSN: 2365-9793 IZA – Institute of Labor Economics Schaumburg-Lippe-Straße 5–9 Phone: +49-228-3894-0 53113 Bonn, Germany Email: [email protected] www.iza.org IZA DP No. 14440 JUNE 2021 ABSTRACT The Dynamics of Inattention in the (Baseball) Field1 Recent theoretical and empirical work characterizes attention as a limited resource that decision-makers strategically allocate. -
A Critical Review of the Hypothesis of a Medieval Origin for Portolan Charts
A critical review of the hypothesis of a medieval origin for portolan charts i Roelof Nicolai A critical review of the hypothesis of a medieval origin for portolan charts Keywords: portolan, chart, medieval, geodesy, cartography, cartometric analysis, history, science ISBN/EAN: 978-90-76851-33-4 NUR-code: 930 Uitgeverij Educatieve Media, Houten. E-mail: [email protected] Vormgeving en drukwerkrealisatie: Atalanta, Houten Cover design: Sander Nicolai The cover shows part of the Carte Pisane, Bibliothèque nationale de France, Cartes et Plans, Ge B 1118. Copyright © by Roelof Nicolai All rights reserved. No part of the material protected by this copyright notice may be repro- duced or utilised in any form or by any means, electronic or mechanical, including photocopy- ing, recording or by information storage and retrieval system, without the prior permission of the author. ii A critical review of the hypothesis of a medieval origin for portolan charts Een kritische beschouwing van de hypothese van een middeleeuwse oorsprong voor portolaankaarten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 3 maart 2014 des middags te 2.30 uur door Roelof Nicolai geboren op 20 november 1953 te Achtkarspelen iii Promotor: Prof. dr. J. P. Hogendijk Co-promotoren: Dr. S. A. Wepster Dr. P. C. J. van der Krogt iv He had bought a large map representing the sea, Without the least vestige of land: And the crew were much pleased when they found it to be A map they could all understand.