Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Bronchitis

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Bronchitis Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Bronchitis Chemical Activity Count (+)-8HYDROXYCALAMENENE 1 (+)-ALPHA-VINIFERIN 1 (+)-CATECHIN 6 (+)-CATECHIN-7-O-GALLATE 1 (+)-CEPHARANTHINE 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 1 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 2 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 5 (-)-EPICATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN 2 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 6 (-)-HYDROXYJASMONIC-ACID 1 Chemical Activity Count (1'S)-1'-ACETOXYCHAVICOL-ACETATE 3 (15:1)-CARDANOL 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (2Z,8Z)-10-ANGELOYLOXY-MATRICARIA-ESTER 1 (3'R,4'R)-3'-EPOXYANGELOYLOXY-4'-ACETOXY-3',4'-DIHYDROSESELIN 1 (5R,8R,9S,10R)-12-OXO-ENT-3,13-CLERODIEN-15-OIC-ACID 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 2 (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE 1 1,2,3,4,6-PENTA-O-GALLOYL-GLUCOSE 1 1,2,4-TRIHYDROXYHEPTADECA-16-ENE 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE 2 1,3,4,5-TETRACAFFEOYLQUINIC-ACID 1 1,3,5-TRIMETHOXYBENZENE 1 1,4-NAPTHAQUINONE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 10 1-ACETYLJATIVATRIOL 1 1-ETHYL-BETA-CARBOLINE 1 1-METHOXYCANTHIN-6-ONE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 1-O-GALLOYL-PEDUNCULAGIN 1 1-TULIPOSIDE-A 2 1-TULIPOSIDE-B 2 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 2 Chemical Activity Count 10-DEACETYLBACCATIN-III 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 10-METHOXYCAMPTOTHECIN 1 11-METHOXY-KOPSILONGINE 1 12-METHOXY-PLEIOCARPINE 1 13',II8-BIAPIGENIN 2 13-ACETYL-BREVIFOLIOL 1 13-OXYINGENOL-ESTER 1 15-ALPHA-ACETOXYKAUREN-19-OIC-ACID 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 2 16-HYDROXYINGENOL-ESTER 1 16-HYDROXYPSEUDOJOLKINOLIDE 1 18-BETA-GLYCYRRHETIC-ACID 1 19-ACETYL-19-DEBENZOYLTAXININE-M 1 1BETA-HYDROXYBACCATIN-1 1 2',7-DIDEACETOXYAUSTROSPICATINE 1 2'-O-GLYCOSYLVITEXIN 1 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H- 1 BENZOCYCLOHEPTENE 2,3-DIHYDROXYBENZOIC-ACID 2 2,4,6-TRIMETHOXYPHENOL 1 2,6-DIMETHOXY-P-BENZOQUINONE 1 2,7-DIHYDROXYCADALENE 2 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 1 2,9-DIDEACETYLTAXININE 1 2-(3',4-DIPHENYL)-ETHANOL 1 3 Chemical Activity Count 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-CAFFEOYL-OXY-3-{2-(4-HYDROXYBENZYL)-4,5-DIHYDROXY}PHENYLPROPIONIC-ACID 1 2-DEACETOXYAUSTROSPICATINE 1 2-DEACETOXYTAXININE-E 1 2-DEACETOXYTAXININE-J 1 2-DEACETYL-5-DECINNAMOYLTAXININE-J 1 2-DEACETYLTAXININE-J 1 2-DECINNAMOYLTAXININE-J 1 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 1 2-METHYLTRICOSANE-8-ONE-23-OL 1 2-O-CAFFEOYL-(+)-ALLOHYDROXYCITRIC-ACID 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 1 3',4',5,7-TETRAHYDROXYFLAVONE 1 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE 1 3'-O-METHYL-CATECHIN 1 3'-O-METHYLBATATASIN-III 1 3,3',4,5'-TETRAHYDROXYSTILBENE 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,3'-DIMETHYLQUERCETIN 1 3,4,5-TRI-O-CAFFEOYLQUINIC-ACID 1 3,4-DICAFFEOYL-QUINIC-ACID 1 3,4-DIHYDROXYBENZOATE 1 3,4-DIHYDROXYBENZOIC-ACID 1 3,4-DIMETHOXYTOLUENE 1 3,4-HYDROXYCINNAMIC-ACID 1 4 Chemical Activity Count 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRACHYLOBANOIC-ACID 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 2 3,5'-DIALLYL-2'-HYDROXY-4-METHOXYBIPHENYL-ETHER 1 3,5,6,7,8,3',4'-HEPTEMETHOXYFLAVONE 2 3,5,8,3',4'-PENTAHYDROXYFLAVONE 1 3,5-BIS(3-METHYL-2-BUTENYL)-4-METHOXY-BENZOIC-ACID 1 3,5-DI-O-CAFFEOYLQUINIC-ACID 1 3,5-DICAFFEOYL-QUINIC-ACID 1 3,5-DIMETHOXY-1,6-DIHYDROXYXANTHONE 1 3,7'-DIMETHYLQUERCETIN 1 3,7,8,2',5'-PENTAHYDROXYFLAVONE 1 3-ACETYLACONITINE 2 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-23-CAFFEATE 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-3-BETA-CAFFEATE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-20(29)-LUPEN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-12-EN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-18-EN-28-OIC-ACID 1 3-CARBOMETHOXY-1,8-DIHYDROXYANTHRAQUINONE 1 3-HYDROXY-FLAVONE 2 3-METHOXY-1,8-DIHYDROXY-ANTHRQUINONE 1 3-METHYLQUERCETIN 1 3-N-BUTYL-PHTHALIDE 2 3-O(ALPHA-L-ARABINOPYRANOSYL(1,2))ALPHA-L-ARABINOPYRANOSYL(1-6)2-ACETOAMIDO-2- 1 DEOXY-BETA-D-GLUCOPYRANOSYL-OLEANOLIC-ACID 3-O-ACETYLOLEANOLIC-ACID 1 3-O-ALPHA-L-RHAMNOPYRANOSYL-(1,2)[BETA-D-GLUCOPYRANOSYL-(1,4)]-ALPHA-L- 1 ARABINOPYRANOSYLOELANOLIC-ACID 5 Chemical Activity Count 3-O-CAFFEOYLQUINIC-ACID 1 3-O-METHYL-MANGOSTIN 1 3-O-TRANS-CAFFEOYLTORMENTIC-ACID 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID 2 3-OXO-11-ALPHA-METHOXYOLEAN-12-ENE-30-OIC-ACID 2 3-OXO-OLEAN-9(11),12-DIENE-30-OIC-ACID 2 4',5-DIHYDROXY-6,7-DIOXOMETHYLENE-FLAVONE-3-O-BETA-D-GLUCOSIDE 1 4',7-DIHYDROXY-3-METHOXY-5,6-DIMETHYLFLAVONE 1 4'5-DIHYDROXY-3',6,7-TRIMETHOXYFLAVONE 1 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL 1 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL-ETHER 1 4,5-DI-O-CAFFEOYLQUINIC-ACID 1 4,5-DIHYDROXY-3,7-DIMETHOXYFLAVONE 1 4,5-DIMETHOXY-6-(2-PROPENYL)1,3-BENZDIOXOLE 1 4,7-DIHYDROXY-2-METHOXY-9,10-DIHYDROPHENANTHRENE 1 4-ACETYLARABINOSYL-ELLAGIC-ACID 1 4-ACETYLXYLOSYL-ELLAGIC-ACID 1 4-ALLYL-PYROCATECHOL 1 4-AMINO-4-CARBOXYCHROMAN-2-ONE 1 4-ARABINOSYL-ELLAGIC-ACID 1 4-EPIABIETIC-ACID 1 4-EPIABIETOL 1 4-HYDROXY-3(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3-(3-METHYL-2-BUTENYL)-5-(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3-(ISOPENTEN-2-YL)-ACETOPHENONE 1 6 Chemical Activity Count 4-HYDROXY-3-METHOXYFLAVONE 1 4-HYDROXY-TRITRIACONTANE-16,18-DIONE 1 4-HYDROXYBENZOYL-ERYTHRITOL 1 4-KETOPINORESINOL 1 4-METHOXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID 1 4-O-CAFFEOYLQUINIC-ACID 1 4-O-METHYL-GLUCURONOXYLAN 2 4-TERPINEOL 1 4-VINYL-GUAIACOL 1 5'-METHOXYHYDNOCARPIN 1 5,4'-DIHYDROXY-3,7,3'-TRIMETHOXYFLAVONE 1 5,7,2',6'-TETRAHYDROXYFLAVONE 1 5,7-DIHYDROXY-2-METHYLCHROMONE-8-C-BETA-GLUCOPYRANOSIDE 1 5,7-DIHYDROXY-3,8-DIMETHOXYFLAVONE 1 5,7-DIHYDROXYCHROMONE 1 5,7-DIHYDROXYCOUMARIN-7-METHYL-ETHER 1 5,7-DIMETHOXYFLAVONE 1 5,8-DIHYDROXYBENZOPYRANONE 1 5-DEOXYINGENOL-ESTER 1 5-HYDROXY-8-O-BETA-D-GLUCOPYRANOSYL-BENZOPYRANONE 1 5-N-ACETYLARDEEMIN 1 5-O-BETA-D-GLUCOPYRANOSYL-3-1-(4-PHENYL)-DECANE 1 5-O-CAFFEOYLQUINIC-ACID 1 6'-O-ACETYL-DAIDZIN 1 6'-O-ACETYL-GENISTIN 1 6,7,4'-TRIHYDROXYISOFLAVAN 1 6,7,4'-TRIHYDROXYISOFLAVANONE 1 7 Chemical Activity Count 6,7,4'-TRIHYDROXYISOFLAVONE 1 6,7-DI-4'-METHOXYISOFLAVAN 1 6,7-DI-4'-METHOXYISOFLAVANONE 1 6,7-DI-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVAN 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVANONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXYCOUMARIN 1 6,7-DIMETHYLAESCULETIN 1 6,7-DIMETHYLESCULETIN 1 6-ALPHA-HYDROXYDEHYDROCOSTUS-LACTONE 1 6-ALPHA-HYDROXYMEDICARPIN 1 6-DEHYDROGINGERDIONE 1 6-DEOXYJACAREUBIN 1 6-GINGERDIOL 1 6-GINGERDIONE 1 6-GINGEROL 5 6-HYDROXYCRINAMINE 1 6-METHOXYTECLEANTHINE 1 6-O-(2''-ACETYL-3'',4''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-(4''-ACETYL-2'',3''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-SHOGAOL 6 7,4'-DIHYDROXY-8-METHYLFLAVAN 1 7,4'-DIHYDROXYFLAVAN 1 7,8-DIHYDROXYFLAVONE 1 7-EPITAXOL 1 7-HYDROXYFLAVAN 1 8 Chemical Activity Count 7-METHOXYCOUMARIN 2 7-N-BUTOXY-3,2',5'-TRIHYDROXYFLAVONE 1 7-O-(6-O-BETA-D-APIOFURANOSYL)-BETA-D-(GLUCOPYRANOSYL)-ORCHINOL 1 7-O-ACETYLTAXINE-A 1 7-O-BETA-D-GLUCOPYRANOSYL-4'-HYDROXY-5-METHOXYISOFLAVONE 1 7-O-METHYL-GLABRANINE 1 7-[3-(3,4-DIHYDROXY-4-HYDROXYMETHYL-TETRAHYDRO-FURAN-2-YLOXY)-4,5-DIHYDROXY-6- 1 HYDROXYMETHYL-TETRAHYDRO-PYRAN-2-YLOXY]...
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Odor Impact of Volatiles Emitted from Marijuana, Cocaine, Heroin and Their Surrogate Scents Somchai Rice Iowa State University, [email protected]
    Agricultural and Biosystems Engineering Agricultural and Biosystems Engineering Publications 12-2015 Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Somchai Rice Iowa State University, [email protected] Jacek A. Koziel Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/abe_eng_pubs Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Toxicology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ abe_eng_pubs/707. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agricultural and Biosystems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Agricultural and Biosystems Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Abstract Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values).
    [Show full text]
  • Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis.
    [Show full text]
  • DELTA-CADINENE SYNTHASE from HYPER­ Sensffively RESPONDING COTTON COTYLEDONS: IDENTIFICATION of SUBSTRATE and PRODUCT and PARTIAL PURIFICATION of THEENZYME
    DELTA-CADINENE SYNTHASE FROM HYPER­ SENSffiVELY RESPONDING COTTON COTYLEDONS: IDENTIFICATION OF SUBSTRATE AND PRODUCT AND PARTIAL PURIFICATION OF THEENZYME By GORDON DALE DA VIS II Bachelor of Science Oklahoma Christian College Oklahoma City, Oklahoma 1978 Submitted to the Faculty of the Graduate College of the Oklahpma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1993 OKLAHOMA STATE UNIVERSITY DELTA-CADINENE SYNTHASE FROM HYPER­ SENSITIVELY RESPONDING COTTON COTYLEDONS: IDENfIFICATION OF SUBSTRATE AND PRODUCT AND PARTIAL PURIFICATION OF THE ENZYME Thesis Approved: ll PREFACE The general subject of this thesis was an investigation into the early portion of the metabolic pathway responsible for the biosynthesis of sesquiterpenoid phytoalexins in cotton tissues inoculated with Xanthomonas campestris pv. malvacearum, the causative agent of bacterial blight of cotton. The purpose of the work was to specifically elucidate the enzymology of the first step of the metabolic pathway responsible for the production of the sesquiterpenoid phytoalexins. Charaeterization of this part of the pathway might be very important as it could be the first committed step in the biosynthesis of the phytoalexins. Study of this enzymatic step could yield basic scientific information concerning regulation of biosynthesis of the phytoalexins; this knowledge may have practical importance if the pathway (or portions of it) are used to create transformed plants. The major accomplishments described in this thesis include: 1) determination that tritium­ labelled farnesyl pyrophosphate is an appropriat~ substrate for assay of cyclase enzyme activity, 2) identification of B-cadinene as the most prominent product of induced cyclase activity in bacterially-inoculated cotton tissues and in cell-free reactions catalyzed by homogenates of these cotton tissues, and 3) initial purification from bacterially-inoculated tissues of the induced cyclase activity responsible for the conversion of famesyl pyrophosphate to 8-cadinene.
    [Show full text]
  • Redalyc.Reactivity Indexes and O-H Bond Dissociation Energies of A
    Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Pérez-González, Adriana; Rebollar-Zepeda, Aida Mariana; León-Carmona, Jorge Rafael; Galano, Annia Reactivity Indexes and O-H Bond Dissociation Energies of a Large Series of Polyphenols: Implications for their Free Radical Scavenging Activity Journal of the Mexican Chemical Society, vol. 56, núm. 3, julio-septiembre, 2012, pp. 241-249 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47524533003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative J. Mex. Chem. Soc. 2012, 56(3), 241-249 ArticleReactivity Indexes and O-H Bond Dissociation Energies of a Large Series of Polyphenols: Implications ©for 2012, their SociedadFree Radical Química de México241 ISSN 1870-249X Reactivity Indexes and O-H Bond Dissociation Energies of a Large Series of Polyphenols: Implications for their Free Radical Scavenging Activity Adriana Pérez-González, Aida Mariana Rebollar-Zepeda, Jorge Rafael León-Carmona, and Annia Galano∗ Departamento de Química. Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa. C. P. 09340. México D. F. México. [email protected] To Professor José Luis Gázquez Mateos for being a great example and a constant motivation. We sincerely thank him for sharing his kindness and knowledge with all of us. Received September 19, 2011; accepted February 20, 2012 Abstract. Several chemical descriptors have been evaluated for thirty Resumen.
    [Show full text]
  • Exploring Essential Oils As Prospective Therapy Against the Ravaging Coronavirus (SARS-Cov-2)
    IBEROAMERICAN JOURNAL OF MEDICINE 04 (2020) 322-330 Journal homepage: www.iberoamericanjm.tk Review Exploring essential oils as prospective therapy against the ravaging Coronavirus (SARS-CoV-2) Emmanuel Onah Ojaha,* aMedicinal Chemistry Research Group, Organic Chemistry Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria ARTICLE INFO ABSTRACT Article history: Introduction: Aromatic plants produce diverse chemical constituents with potential to Received 09 June 2020 inhibit viral infections. These plants have been utilized for the prevention and treatment Received in revised form 16 June of a range of infectious and non-infectious diseases. Essential oils are among the plant- 2020 derived antiviral agents that are being employed in phytomedicine, and are considered as prospective drug candidate against the ravaging Coronavirus. Accepted 22 June 2020 Methods: Relevant articles relating to the concept were identified using a combination of manual library search as well as journal publication on the subject and critically Keywords: reviewed. Coronavirus Results: Essential oils in medicinal plants have extensive applications in medicinal Medicinal plants chemistry, aromatherapy and pharmaceuticals. Essential oils have several biological Essential oil properties such as antibacterial, antifungal, antiviral, antioxidant, anti-inflammatory, Aromatherapy wound-healing and anti-cancer effects in vitro and in vivo. Several reports have analyzed Antiviral and described essential oils as good antiviral agents against Respiratory tract viral infections hence are excellent prospective candidate against Corona virus. Conclusions: It is hoped that efficient and effective exploration and optimization of essential oils from medicinal plants would improve the drug discovery process against the ravaging Coronavirus. © 2020 The Authors. Published by Iberoamerican Journal of Medicine. This is an open access article under the CC BY license (http://creativecommons.
    [Show full text]
  • Asian Journal of Medical Sciences 1 (2010) 20-25
    Asian Journal of Medical Sciences 1 (2010) 20-25 ASIAN JOURNAL OF MEDICAL SCIENCES Hepato-protective Potential of Hull Fraction from Indian Flaxseed Cultivar J. Rajesha1*, A. Ranga Rao3, M. Karuna Kumar2 and G. A. Ravishankar3 1Department of Biochemistry, Yuvaraja’s College and 2Department of Studies in Biochemistry, University of Mysore, Mysore. 570005, India. 3Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570020,India. Abstract Objective: Secoisolariciresinol diglucoside (SDG) isolated from hull fraction of Indian flaxseed cultivar was studied for its hepatoprotective potential by measuring the level of hepatic enzymes such as catalase, peroxidase and superoxide desmutase (SOD) upon feeding to albino rats. Material & Methods: The animals were grouped into five groups (n=5): The first group served as normal and received normal diet without treatment of toxin and hull fraction of flaxseed. The second group was named the control and received a regular commercial diet. The third, fourth and fifth groups were fed with normal diet and supplemented with hull fraction of flaxseed (150 and 250 μg/kg) and standard SDG (150 μg/kg), that was mixed with olive oil for 14 days. Results: Pretreatment of rats with 150 µg/kg b.w hull fraction of flaxseed followed by CCl4 treatment caused restoration of catalase, SOD and peroxidase by 37.70%, 108.22% and 23.89% respectively as compared to control. The group treated with 250 µg/kg b.w hull fraction of flaxseed showed the restoration of 67.30%, 152.82% and 39.88% of catalase, SOD and peroxidase, respectively. Conclusion: In conclusion, SDG fed in the form of flaxseed hull is responsible for its hepatoprotective properties.
    [Show full text]
  • 1.25 Lignans: Biosynthesis and Function
    1.25 Lignans: Biosynthesis and Function NORMAN G. LEWIS and LAURENCE B. DAVIN Washington State University, Pullman, WA, USA 0[14[0 INTRODUCTION 539 0[14[1 DEFINITION AND NOMENCLATURE 539 0[14[2 EVOLUTION OF THE LIGNAN PATHWAY 531 0[14[3 OCCURRENCE 534 0[14[3[0 Li`nans in {{Early|| Land Plants 534 0[14[3[1 Li`nans in Gymnosperms and An`iosperms "General Features# 536 0[14[4 OPTICAL ACTIVITY OF LIGNAN SKELETAL TYPES AND LIMITATIONS TO THE FREE RADICAL RANDOM COUPLING HYPOTHESIS 536 0[14[5 707? STEREOSELECTIVE COUPLING] DIRIGENT PROTEINS AND E!CONIFERYL ALCOHOL RADICALS 541 0[14[5[0 Diri`ent Proteins Stipulate Stereoselective Outcome of E!Coniferyl Alcohol Radical Couplin` in Pinoresinol Formation 541 0[14[5[1 Clonin` of the Gene Encodin` the Diri`ent Protein and Recombinant Protein Expression in Heterolo`ous Systems 543 0[14[5[2 Sequence Homolo`y Comparisons 543 0[14[5[3 Comparable Systems 543 0[14[5[4 Perceived Biochemical Mechanism of Action 546 0[14[6 PINORESINOL METABOLISM AND ASSOCIATED METABOLIC PROCESSES 547 0[14[6[0 Sesamum indicum] "¦#!Piperitol\ "¦#!Sesamin\ and "¦#!Sesamolinol Synthases 547 0[14[6[1 Magnolia kobus] Pinoresinol and Pinoresinol Monomethyl Ether O!Methyltransferase"s# 550 0[14[6[2 Forsythia intermedia and Forsythia suspensa 551 0[14[6[2[0 "¦#!Pinoresinol:"¦#!lariciresinol reductase 552 0[14[6[2[1 "−#!Secoisolariciresinol dehydro`enase 554 0[14[6[2[2 Matairesinol O!methyltransferase 556 0[14[6[3 Linum usitatissimum] "−#!Pinoresinol:"−#!Lariciresinol Reductase and "¦#!Secoisolariciresinol Glucosyltransferase"s# 557
    [Show full text]
  • ANTIOXIDANT PROPERTIES of FLAXSEED LIGNANS USING in VITRO MODEL SYSTEMS a Thesis Submitted to the College of Graduate Studies A
    ANTIOXIDANT PROPERTIES OF FLAXSEED LIGNANS USING IN VITRO MODEL SYSTEMS A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Pharmacy and Nutrition of the University of Saskatchewan Saskatoon, Saskatchewan Canada By Farah Hosseinian Copyright Farah Hosseinian April 2006 All Rights Reserved The author claims copyright. Use shall not be made of the material contained herein without proper acknowledgment, as indicated on the copyright page. i PERMISION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis, in whole or in parts, should be addressed to: Head College of Pharmacy and Nutrition University of Saskatchewan 110 Science Place Saskatoon, SK S7N 5C9 Canada ii 1.0 ABSTRACT The major objectives of this study were to investigate the antioxidant properties of flaxseed lignans secoisolariciresinol (SECO 2) and secoisolariciresinol diglycoside (SDG 1) and their major oxidative compounds using 2,2'-azobis(2- amidinopropane) dihydrochloride (AAPH 47) in an in vitro model of lipid peroxidation.
    [Show full text]
  • Identification of the Anti-COVID-19 Mechanism of Action of Han-Shi Blocking Lung Using Network Pharmacology- Integrated Molecular Docking
    Yuan et al Tropical Journal of Pharmaceutical Research June 2021; 20 (6): 1241-1249 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v20i6.21 Original Research Article Identification of the anti-COVID-19 mechanism of action of Han-Shi Blocking Lung using network pharmacology- integrated molecular docking Chong Yuan1, Fei Wang1, Peng-Yu Chen1, Zong-Chao Hong1, Yan-Fang Yang1,2, He-Zhen Wu1,2* 1Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, 2Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430061, China *For correspondence: Email: [email protected], [email protected]; Tel: +86-13667237629, +86-13545341663 Sent for review: 30 June 2020 Revised accepted: 16 May 2021 Abstract Purpose: To investigate the bio-active components and the potential mechanism of the prescription remedy, Han-Shi blocking lung, with network pharmacology with a view to expanding its application. Methods: Chemical components were first collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Pharmmapper database and GeneCards were used to predict the targets related to active components and COVID-19. Using DAVIDE and KOBAS 3.0 databases, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were enriched. A “components-targets-pathways” (C-T-P) network was conducted by Cytoscape 3.7.1 software. With the aid of Discovery Studio 2016 software, bio-active components were selected to dock with SARS-COV-2 3CL and ACE2.
    [Show full text]
  • Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases
    International Journal of Molecular Sciences Review Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases Thanasekaran Jayakumar 1, Periyakali Saravana Bhavan 2 and Joen-Rong Sheu 1,3,* 1 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; [email protected] 2 Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; [email protected] 3 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected]; Tel.: +886-2-27361661-3199; Fax: +886-27390450 Received: 16 June 2020; Accepted: 8 July 2020; Published: 13 July 2020 Abstract: Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities.
    [Show full text]