Metagenomic Characterisation of Viral Communities in Corals: Mining Biological Signal from Methodological Noise1

Total Page:16

File Type:pdf, Size:1020Kb

Metagenomic Characterisation of Viral Communities in Corals: Mining Biological Signal from Methodological Noise1 Metagenomic characterisation of viral communities in corals: Mining biological signal from methodological noise1 Running title: Methodological biases in coral viromics Elisha M. Wood-Charlson1,4,5, Karen D. Weynberg1, Curtis A. Suttle2, Simon Roux3,5, Madeleine J. H. van Oppen1 1 Australian Institute of Marine Science, Townsville, QLD, Australia 2 Departments of Earth, Ocean & Atmospheric Sciences, Microbiology & Immunology, Botany and the Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada 3 LaboratoireArticle Micro-organismes: Genome and Environment, Université Blaise Pascal, Clermont Université, France 4 Correspondence: Elisha M. Wood-Charlson Australian Institute of Marine Science PMB 3 Townsville MC Townsville, QLD 4810, Australia E-mail: [email protected] 5 Current affiliations: Wood-Charlson, Center for Microbial Oceanography: Research and Education, University of Hawai’i at Manoa, Honolulu, HI, USA; Roux, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA This article has been accepted for publication and undergone full peer review but has not been through the copyediting,Accepted typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1462-2920.12803 1 This article is protected by copyright. All rights reserved. Summary Reef-building corals form close associations with organisms from all three domains of life and therefore have many potential viral hosts. Yet, knowledge of viral communities associated with corals is barely explored. This complexity presents a number of challenges in terms of the metagenomic assessments of coral viral communities, and requires specialised methods for purification and amplification of viral nucleic acids, as well as virome annotation. In this mini-review, we conduct a meta-analysis of the limited number of existing coral virome studies, as well as available coral transcriptome and metagenome data, to identify trends and potential complications inherent in different methods. The Article analysis shows that the method used for viral nucleic acid isolation drastically affects the observed viral assemblage and interpretation of the results. Further, the small number of viral reference genomes available, coupled with short sequence read lengths might cause errors in virus identification. Despite these limitations and potential biases, the data show that viral communities associated with corals are diverse, with double- and single-stranded DNA and RNA viruses. The identified viruses are dominated by dsDNA-tailed bacteriophages, but there are also viruses that infect eukaryote hosts, likely the endosymbiotic dinoflagellates, Symbiodinium spp., host coral, and other eukaryotes in close association. Keywords: coral, Symbiodinium, metagenome, virome, virus, methodological biases Accepted 2 This article is protected by copyright. All rights reserved. Introduction Scleractinian (stony) corals deposit calcium carbonate during colony growth and build the three-dimensional structures that constitute coral reefs. This structural framework provides important habitat for a wide taxonomic diversity of macroscopic and microscopic reef organisms. The coral itself hosts a collective of organisms, referred to as the coral holobiont, that spans the three domains of life, as well as the viruses that infect them. Of all the components in the coral holobiont, viruses are the least studied. Transmission electron microscopy (TEM) was used in earlier publications to describe virus-like particles (VLPs) in corals (Wilson et al., 2001; 2005; Davy and Patten, 2006; Patten et al., 2008). With the development of next-generation sequencing, a metagenomics approach to viral community Article characterisation is now also available (Edwards and Rohwer, 2005; Kristensen et al., 2010; Rosario and Breitbart, 2011). However, there are inherent challenges to the purification of viruses and viral genomes. The small size of virus particles and their genomes, combined with losses during purification typically results in low amounts of nucleic acids, on which whole genome amplification (WGA) is often used to obtain enough material for sequencing; this can introduce quantitative biases in the data (Angly et al., 2006; Duhaime et al., 2012). Moreover, the diverse genome chemistry of viruses (single stranded (ss)RNA, double stranded (ds)RNA, ssDNA, or dsDNA) complicates nucleic acid isolation from mixed communities (Andrews-Pfannkoch et al., 2010; Weynberg et al., 2014). Viral metagenomes prepared from coral tissues require careful post-sequencing processing. Most marine viruses lack representation in sequence databases, with coral-associated viruses being particularly scant. While there have been some phage therapy trials for bacteriaAccepted associated with coral disease (Atad et al., 2012; Cohen et al., 2013), cultured 3 This article is protected by copyright. All rights reserved. viruses associated with a healthy coral holobiont have not been reported. The paucity of representative viral sequences in databases results in many unidentified sequences in marine viral metagenomes (Breitbart et al., 2002; Angly et al., 2006; Wegley et al., 2007; Dinsdale et al., 2008; Vega Thurber et al., 2008; Williamson et al., 2008; Correa et al., 2013). Further, sequences with similarity to cellular genes are often present in viral metagenomes (Roux et al., 2013a), which may be the result of host contamination, horizontal gene transfer (HGT) between viruses and their hosts, or gene transfer agents (GTAs) (Canchaya et al., 2003; Monier et al., 2009; Liu et al., 2011; Lang et al., 2012; Roux et al., 2013a). All of these factors are likely important in the coral holobiont, given its wide diversity of organisms that live in close association. Article In spite of these caveats, holobiont metagenome and transcriptome sequence data can provide qualitative information about viruses associated with various members of the coral holobiont. Regardless of whether the focus of these studies is the coral host tissue, the algal symbiont, or the prokaryotes, it is difficult to separate the host organisms from the associated viral community. Therefore, raw sequence data from non-viral fractions will likely contain viral sequences. In this contribution, publically available coral transcriptomes, as well as prokaryote and viral metagenomes isolated from corals, were interrogated for viral sequences and analysed comparatively. The data sets Coral, prokaryotic, and viral metagenome and meta-transcriptome data sets were downloaded from publically available sequence archives and uploaded to Metavir (Roux et al., 2011),Accepted an online tool for analysing viral genomic data. Sequences from 11 coral species 4 This article is protected by copyright. All rights reserved. (Supplementary Table 1) were added to Metavir as “Coral-associated viruses” for this study. In this analysis, we also included “P. compressa” (Vega Thurber et al., 2008), “Coral Atoll” (Dinsdale et al., 2008), and several data sets from the “Coral virus – generating metagenomes” (Weynberg et al., 2014; Supplementary Table 1). Metagenomes were analysed using Metavir’s BLAST-based comparison (e-value ≤ 10-5) to the 2014-09-10 NCBI viral refseq database and normalized to genome length using the built-in Genome-relative Abundance and Average Size (GAAS) normalization tool (Angly et al., 2009). Metavir assigns taxonomy to a viral sequence using this BLAST-based comparison to sequences that are annotated in the NCBI viral refseq database. Article Methodological biases: Purification and amplification techniques select for certain viral groups Coral-associated data sets were screened for the presence of viruses identified to a viral family, where possible (Table 1). All data sets contained dsDNA viruses, but were variable for ssDNA, dsRNA, ssRNA, and retrotranscribing (RT) viral families, depending on the holobiont fraction targeted for sequencing. Coral transcriptomes (Supplementary Table 1) were generated from extracted holobiont RNA, and they produced viral assemblages dominated by RNA viruses (36-78%). While this may be expected, since transcriptomes target RNA sequences (Supplementary Table 2), it is possible that they may also contain DNA viruses, if the sample was undergoing an active DNA virus replication event. RNA viral assemblages from coral transcriptomes contained ssRNA viruses (1-13% of identified virus), a dsRNA virus (2-31%), and ssRNA and dsDNA RT viruses (29-71%). Prokaryote metagenomes (Supplementary Table 1) targeted the prokaryotic community through Percoll fractionationAccepted (Supplementary Table 2) to remove coral host and Symbiodinium cells. The 5 This article is protected by copyright. All rights reserved. prokaryote-containing fractions were extracted for DNA and amplified through a Phi29 DNA polymerase-based rolling circle WGA method to obtain enough material for sequencing (Littman et al., 2011; Wegley et al., 2007). The resulting viral assemblages were surprisingly depleted for dsDNA viruses (2-8% of identified viruses), and had a notably larger representation of ssDNA viruses (31-96%). In fact, the Porites astreoides prokaryotic data set (Wegley et al., 2007) was dominated by hits to a single ssDNA virus, an unclassified Dragonfly-associated microphage (48%). With almost half of the viral assemblage from this prokaryotic metagenome annotating to a single ssDNA virus, it is
Recommended publications
  • Novel Sulfolobus Virus with an Exceptional Capsid Architecture
    GENETIC DIVERSITY AND EVOLUTION crossm Novel Sulfolobus Virus with an Exceptional Capsid Architecture Haina Wang,a Zhenqian Guo,b Hongli Feng,b Yufei Chen,c Xiuqiang Chen,a Zhimeng Li,a Walter Hernández-Ascencio,d Xin Dai,a,f Zhenfeng Zhang,a Xiaowei Zheng,a Marielos Mora-López,d Yu Fu,a Chuanlun Zhang,e Ping Zhu,b,f Li Huanga,f aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China bNational Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China cState Key Laboratory of Marine Geology, Tongji University, Shanghai, China dCenter for Research in Cell and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica eDepartment of Ocean Science and Engineering, South University of Science and Technology, Shenzhen, China fCollege of Life Sciences, University of Chinese Academy of Sciences, Beijing, China ABSTRACT A novel archaeal virus, denoted Sulfolobus ellipsoid virus 1 (SEV1), was isolated from an acidic hot spring in Costa Rica. The morphologically unique virion of SEV1 contains a protein capsid with 16 regularly spaced striations and an 11-nm- thick envelope. The capsid exhibits an unusual architecture in which the viral DNA, probably in the form of a nucleoprotein filament, wraps around the longitudinal axis of the virion in a plane to form a multilayered disk-like structure with a central hole, and 16 of these structures are stacked to generate a spool-like capsid. SEV1 harbors a linear double-stranded DNA genome of ϳ23 kb, which encodes 38 predicted open reading frames (ORFs).
    [Show full text]
  • Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification
    ORIGINAL RESEARCH published: 10 March 2017 doi: 10.3389/fmicb.2017.00380 Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification Arshan Nasir 1, 2 and Gustavo Caetano-Anollés 1* 1 Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2 Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new Edited by: additions, suggesting it could be a useful supplement to experimental approaches and Ricardo Flores, to aid qualitative assessment of viral diversity in metagenome samples. Polytechnic University of Valencia, Spain Keywords: capsid, virion, protein structure, virus taxonomy, SCOP, fold superfamily Reviewed by: Mario A. Fares, Consejo Superior de Investigaciones INTRODUCTION Científicas(CSIC), Spain Janne J. Ravantti, The last few years have dramatically increased our knowledge about viral systematics and University of Helsinki, Finland evolution.
    [Show full text]
  • Nucleotide Amino Acid Size (Nt) #Orfs Marnavirus Heterosigma Akashiwo Heterosigma Akashiwo RNA Heterosigma Lang Et Al
    Supplementary Table 1: Summary of information for all viruses falling within the seven Marnaviridae genera in our analyses. Accession Genome Genus Species Virus name Strain Abbreviation Source Country Reference Nucleotide Amino acid Size (nt) #ORFs Marnavirus Heterosigma akashiwo Heterosigma akashiwo RNA Heterosigma Lang et al. , 2004; HaRNAV AY337486 AAP97137 8587 One Canada RNA virus 1 virus akashiwo Tai et al. , 2003 Marine single- ASG92540 Moniruzzaman et Classification pending Q sR OV 020 KY286100 9290 Two celled USA ASG92541 al ., 2017 eukaryotes Marine single- Moniruzzaman et Classification pending Q sR OV 041 KY286101 ASG92542 9328 One celled USA al ., 2017 eukaryotes APG78557 Classification pending Wenzhou picorna-like virus 13 WZSBei69459 KX884360 9458 One Bivalve China Shi et al ., 2016 APG78557 Classification pending Changjiang picorna-like virus 2 CJLX30436 KX884547 APG79001 7171 One Crayfish China Shi et al ., 2016 Beihai picorna-like virus 57 BHHQ57630 KX883356 APG76773 8518 One Tunicate China Shi et al ., 2016 Classification pending Beihai picorna-like virus 57 BHJP51916 KX883380 APG76812 8518 One Tunicate China Shi et al ., 2016 Marine single- ASG92530 Moniruzzaman et Classification pending N OV 137 KY130494 7746 Two celled USA ASG92531 al ., 2017 eukaryotes Hubei picorna-like virus 7 WHSF7327 KX884284 APG78434 9614 One Pill worm China Shi et al ., 2016 Classification pending Hubei picorna-like virus 7 WHCC111241 KX884268 APG78407 7945 One Insect China Shi et al ., 2016 Sanxia atyid shrimp virus 2 WHCCII13331 KX884278 APG78424 10445 One Insect China Shi et al ., 2016 Classification pending Freshwater atyid Sanxia atyid shrimp virus 2 SXXX37884 KX883708 APG77465 10400 One China Shi et al ., 2016 shrimp Labyrnavirus Aurantiochytrium single Aurantiochytrium single stranded BAE47143 Aurantiochytriu AuRNAV AB193726 9035 Three4 Japan Takao et al.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • On the Biological Success of Viruses
    MI67CH25-Turner ARI 19 June 2013 8:14 V I E E W R S Review in Advance first posted online on June 28, 2013. (Changes may still occur before final publication E online and in print.) I N C N A D V A On the Biological Success of Viruses Brian R. Wasik and Paul E. Turner Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106; email: [email protected], [email protected] Annu. Rev. Microbiol. 2013. 67:519–41 Keywords The Annual Review of Microbiology is online at adaptation, biodiversity, environmental change, evolvability, extinction, micro.annualreviews.org robustness This article’s doi: 10.1146/annurev-micro-090110-102833 Abstract Copyright c 2013 by Annual Reviews. Are viruses more biologically successful than cellular life? Here we exam- All rights reserved ine many ways of gauging biological success, including numerical abun- dance, environmental tolerance, type biodiversity, reproductive potential, and widespread impact on other organisms. We especially focus on suc- cessful ability to evolutionarily adapt in the face of environmental change. Viruses are often challenged by dynamic environments, such as host immune function and evolved resistance as well as abiotic fluctuations in temperature, moisture, and other stressors that reduce virion stability. Despite these chal- lenges, our experimental evolution studies show that viruses can often readily adapt, and novel virus emergence in humans and other hosts is increasingly problematic. We additionally consider whether viruses are advantaged in evolvability—the capacity to evolve—and in avoidance of extinction. On the basis of these different ways of gauging biological success, we conclude that viruses are the most successful inhabitants of the biosphere.
    [Show full text]
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • WO 2015/061752 Al 30 April 2015 (30.04.2015) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/061752 Al 30 April 2015 (30.04.2015) P O P CT (51) International Patent Classification: Idit; 816 Fremont Street, Apt. D, Menlo Park, CA 94025 A61K 39/395 (2006.01) A61P 35/00 (2006.01) (US). A61K 31/519 (2006.01) (74) Agent: HOSTETLER, Michael, J.; Wilson Sonsini (21) International Application Number: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA PCT/US20 14/062278 94304 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 24 October 2014 (24.10.2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 61/895,988 25 October 2013 (25. 10.2013) US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 61/899,764 4 November 2013 (04. 11.2013) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/91 1,953 4 December 2013 (04. 12.2013) us SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 61/937,392 7 February 2014 (07.02.2014) us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • <I>AUREOCOCCUS ANOPHAGEFFERENS</I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS Mohammad Moniruzzaman University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Moniruzzaman, Mohammad, "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4152 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohammad Moniruzzaman entitled "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage
    Edinburgh Research Explorer High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage Citation for published version: Ng, TF, Marine, R, Wang, C, Simmonds, P, Kapusinszky, B, Bodhidatta, L, Oderinde, BS, Wommack, KE & Delwart, E 2012, 'High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage', Journal of Virology, vol. 86, no. 22, pp. 12161-12175. https://doi.org/10.1128/jvi.00869-12 Digital Object Identifier (DOI): 10.1128/jvi.00869-12 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Virology Publisher Rights Statement: Copyright © 2012, American Society for Microbiology. All Rights Reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage Terry Fei Fan Ng,a,b Rachel Marine,c Chunlin Wang,d Peter Simmonds,e Beatrix Kapusinszky,a,b Ladaporn Bodhidatta,f Bamidele Soji Oderinde,g K.
    [Show full text]
  • New Ssrna Virus Family Infecting Dinoflagellates: Alvernaviridae (E.G
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc Code assigned: 2009.016a-iP (to be completed by ICTV officers) Short title: New ssRNA virus family infecting dinoflagellates: Alvernaviridae (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Keizo Nagasaki ([email protected]), Yuji Tomaru ([email protected]) Has this proposal has been seen and agreed by the relevant study group(s)? Please select answer in the box on the right Yes ICTV-EC or Study Group comments and response of the proposer: Date first submitted to ICTV: Date of this revision (if different to above): Page 1 of 11 MODULE 2: NEW SPECIES Part (a) to create and name one or more new species. If more than one, they should be a group of related species belonging to the same genus (see Part b) Code 2009.016aP (assigned by ICTV officers) To create 1 new species with the name(s): Heterocapsa circularisquama RNA virus 01 Part (b) assigning new species to higher taxa All new species must be assigned to a higher taxon.
    [Show full text]
  • Spindle Shaped Virus (SSV) : Mutants and Their Infectivity
    Portland State University PDXScholar University Honors Theses University Honors College 2014 Spindle Shaped Virus (SSV) : Mutants and Their Infectivity Thien Hoang Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Hoang, Thien, "Spindle Shaped Virus (SSV) : Mutants and Their Infectivity" (2014). University Honors Theses. Paper 231. https://doi.org/10.15760/honors.56 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Spindle Shaped Virus (SSV): Mutants and Their Infectivity by Thien Hoang An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Biology: Micro/molecular biology Thesis Adviser Dr. Kenneth Stedman Portland State University 2014 Abstract: SSV1 is an archaeal virus that infects the thermoacidophile Sulfolobus residing in hot springs. The lemon shaped/spindle-shaped fuselloviruses (SSV) that infect Sulfolobus solfataricus is quite morphologically different from almost all other viruses. Because these archaeal viruses live in hot springs with high temperatures and low pH, their genomes and structures have adapted to withstand such harsh conditions. Little research has been done on these extreme viruses, and of the little research, SSV has been the most prominent. Not much is known about the genes that the genome encodes and so I have inserted transposons randomly into genome to determine functionality.
    [Show full text]