<<

Atomic Structure and the Fine structure constant α

Niels Bohr Erwin Schrödinger Wolfgang Pauli Paul Dirac

Lecture Notes Fundamental Constants 2015; W. Ubachs The Old

An is held in orbit by the Coulomb force: (equals centripetal force)

FCentripetal = FCoulomb mv2 Ze2 = 2 rn 4πε0rn

Bohrs postulate: Quantization of angular momentum Ze2 r n22 v2r 2 = = h 4πε m m2 L = mvr = n = n 0 2π n2h2ε n2 h2ε r = 0 = r r = 0 = 0.529×10−10 m n πmZe2 Z 1 1 πme2

The size of the orbit is quantized, and we know the size of an !

Lecture Notes Fundamental Constants 2015; W. Ubachs The Old Bohr Model: Quantisation

1 Ze2 Z 2 Quantisation of energy = 2 − = − En mv 2 R∞ 2 4πε0rn n 2  e2  m R =   e The is the scale unit ∞   2 of in the atom  4πε0  2

2 2 Z Z Energies in the atom in atomic units E = − R∞ ⇒ − 1 Hartree = 2 Rydberg n n2 2n2

2 2 2 Z Z 2 2 e = − = − α with α = En 2 R∞ 2 mc n 2n 4πε0c

dimensionless energy

Lecture Notes Fundamental Constants 2015; W. Ubachs The Old Bohr Model; velocity of the electron

Velocity in Bohr orbit

vn=1 = Zαc

e2 α = 4πε 0c Limit on the number of elements ? Classical argument

Lecture Notes Fundamental Constants 2015; W. Ubachs Schrodinger Equation; Radial part: special case l=0

2 2 2 d dR  2   Ze − 2 + +   + = 2 r V (r) 2 ( 1)R ER Prefactor for : − = 0 2mr dr dr 2mr 1/r   ma 4πε0  = Find a solution for 0 2 Solution for the 4πε0 2 2 =   2  Ze a 2 −  R"+ R' − R = ER length scale paramater Ze m 2µ  r  4πε 0r 2 1 4πε0 Physical intuition; no density for r → ∞ a = a0 with a = Z 0 2 e me − trial: R(r) = Ae r / a

A −r / a R R'= − e = − Solutions for the energy a a A R 2 R"= e−r / a = 2  e2  m 2 2 = − = − 2   e a a E Z   2 2ma  4πε0  2 2  1 2  Ze2 − − − =  2  E πε 2 in the 2m  a ar  4 0r E = −Z R ∞ Bohr model (n=1) must hold for all values of r

Lecture Notes Fundamental Constants 2015; W. Ubachs : same result The effect of the proton- in the atom

Velocity vectors: Centripetal force  M  v1 = v m v2 m v2 µv2 m + M F = 1 1 = 2 2 =  M  r1 r2 r v = − v 2 m + M Quantisation of angular momentum: h Relative velocity L = µvr = n = n Relative coordinates:  π  dr 2 v =    dt r = r1 − r2 Centre of Mass   1 2 1 2 1 2 + = K = m1v1 + m2v2 = µv mr1 Mr2 0 2 2 2 Problem is similar, but Position vectors: Angular momentum L = m v r + m v r = µvr m  µ  M  1 1 1 2 2 2 r1 = r m + M With reduced mass r relative coordinate  m  mM r = − r µ = 2 m + M m + M

Lecture Notes Fundamental Constants 2015; W. Ubachs Reduced mass in the old Bohr model  isotope shifts

Results

Quantisation of radius in orbit:

2 2 2 n 4πε0 n me 1. Isotope shift rn = = a0 Z 2µ Z µ on an atomic transition e

Energy levels in the Bohr model: 2. Effect of proton/electron mass ratio on the energy levels Z 2  µ  E = −  R∞ n 2  m  µ mM M M / m µ n  e  red = / m = = = me m + M m + M 1+ M / m 1+ µ Rydberg constant:  µ  R =  R∞ H  m  Conclusion: the are not a good  e  probe to detect a variation of µ

Lecture Notes Fundamental Constants 2015; W. Ubachs General conclusions on atoms and atomic structure

2 2 Note units (different units in this equation): Z Z 2 2 = − = − α EI 7 −1 En 2 R∞ 2 mc R∞ = − =1.0973731568549(83)×10 m n 2n hc

dimensionless energy

Conclusion 1: All atoms have the Rydberg as a scale for energy; they cannot be used to detect a variation of α

µ M / m µ red = = m 1+ M / m 1+ µ

Conclusion 2: the atoms are not a good probe to detect a variation of µ

Lecture Notes Fundamental Constants 2015; W. Ubachs Relativistic effects in atoms

Electron

No classical analogue for this phenomenon Origin of the spin-concept

-Stern-Gerlach experiment; 1 space quantization s =  2

Pauli: There is an additional “two-valuedness” in the spectra of atoms, behaving like an angular momentum

Goudsmit and Uhlenbeck This may be interpreted/represented -Theory: the periodic system requires as an angular momentum an additional two-valuedness

Lecture Notes Fundamental Constants 2015; W. Ubachs Electron spin as an angular momentum operator

In analogy with the orbital angular momentum of the electron  1  L s =  µ = −g µ g =1 2 L L B  L A spin (intrinsic) angular momentum can be Spin is an angular momentum, so it defined:  S µ = −g µ should satisfy S S B  S 2 s,m = 2s(s +1) s,m s s a) in relativistic Dirac theory Sz s,ms = ms s,ms gS = 2 1 1 s = ,m = ± b) in 2 s 2 gS = 2.00232...

Note: the spin of the electron cannot be explained from a classically “spinning” electronic charge

2 Electron radius 2 e 2 v 1 m c = Angular momentum = ω = 2 =  from EM-energy: e Le I mere 4πε0re from spin 5 re 2

Lecture Notes Fundamental Constants 2015; W. Ubachs Spin-orbit interaction

Frame of nucleus: Spin of electron is a magnet with dipole  v Frame of electron:  µ  µ = −g B S S e  -e -e The dipole orients in the B-field with energy +Ze +Ze   Ze2    V = −µ ⋅ B = S ⋅ L − v LS S 2 2 3 4πε0me c r The moving charged nucleus induces a magnetic field at the location of the A fully relativistic derivation   electron, via Biot-Savart’s law = ζ ⋅   () yields VLS (r)S L  µ Ze(− v)× r with B = 0 4π 3 Ze2 1 r ζ (r) =    1 2 2 3 Use L = mr ×v ; µ0ε0 = 8πε0me c r nl c2  Use:  Ze L 1 2 Then B = = = int πε 2 3 r3 a3n3( +1/ 2)( +1) 4 0 mec r 3  Zαmc  2   3 Lecture Notes Fundamental Constants 2015; W. Ubachs  n  n ( +1/ 2)( +1) Fine structure in spectra due to Spin-orbit interaction

In first order correction to energy Then the full interaction energy is: for state lsjm j   2 4  j( j +1)− ( +1)− s(s +1) E = lsjm V lsjm ESO = α Z hcR  SO j SL j  2n3( +1/ 2)( +1)      = lsjm j ζ nl L ⋅ S lsjm j S-states  = 0, j = s ESO = 0 Evaluate the dot-product   2   J 2 = L + S = L2 + S 2 + 2L ⋅ S P-states  =1, j =  ±1/ 2 Then α 2Z 4hcR   E = 1 2 2 2 SO 3 L ⋅ S sjm j = (J − L − S )sjm j 2n 2 1 = 2{j( j +1)− ( +1)− s(s +1)}sjm 2 j

Show that the “centre-of-gravity” does not shift

Lecture Notes Fundamental Constants 2015; W. Ubachs Kinetic Relativistic effects in atomic

Relativistic kinetic energy p4 Krel = Ψnjm − Ψnjm = rel 2 2 2 4 2 8m3c3 Ekin = p c + m c − mc = e 2 2 2 2 2 Z 4α 2  1 3  mc 1+ p / m c − mc = − (hc)R −  2n3  2 +1 8n   p2 p4  mc2 1+ − + 2 2 4 4  2m c 8m c 

First relativistic correction term p4 K = − rel 3 2 8mec To be used in perturbation analysis:    p = − ∇ operator does not i change wave function

Lecture Notes Fundamental Constants 2015; W. Ubachs Relativistic effects in atomic hydrogen: SO + Kinetic

Relativistic energy levels:

Z 4α 2  2 3  Enj = En − (hc)R −  2n3  2 j +1 4n 

Fine structure splitting ~ Z4α2

j=1/2 levels degenerate Also the outcome of the ∂ψ (cα ⋅ p + βmc2 )ψ = ih ∂t P.A.M. Dirac

Lecture Notes Fundamental Constants 2015; W. Ubachs in atomic hydrogen: 21 cm

Nucleus has a spin as well, and therefore a magnetic moment e  I µ = µI = gI µN ; N  2M p

Interaction with electron spin, that may have density at the site of the nucleus (Fermi contact term)

    1 I ⋅ S = I ⋅ J = (F 2 − J 2 − I 2 ) 2

Splitting : F=1 ↔ F=0 1.42 GHz

F=1 or λ = 21 cm

F=0 2 Scaling: g pα / µ Magnetic dipole transition

Lecture Notes Fundamental Constants 2015; W. Ubachs Alkali Doublets

  Ze2 S ⋅ L V = SL 2 2 3 with 4πε0 2m c r   1 S ⋅ L = (J 2 − L2 − S 2 ) Na doublet 2 Selection rules: ∆ = ±1 ∆j = 0,±1 ∆s = 0

2P np 3/2 α 2Z 4hcR E = 2 SO 3 P1/2 2n

ns 2 S1/2

Lecture Notes Fundamental Constants 2015; W. Ubachs The Alkali Doublet Method

Lecture Notes Fundamental Constants 2015; W. Ubachs The Many Multiplet Method

1.

2. 3.

1. Strong transitions 2. Weak, narrow transitions 3. Hyperfine transitions

Lecture Notes Fundamental Constants 2015; W. Ubachs The Many Multiplet Method

Z 2 E = − R∞ n n2 2  e2  m R =   e ∞   2  4πε0  2

Lecture Notes Fundamental Constants 2015; W. Ubachs Relativistic corrections in the Many Multiplet Method

Relativistic correction to Further include Many body effects

me4Z 2 (Zα )2  2 3  (Zα )2  1  ∆ = −  −  ∆ ≅  − ( ) n 2 3   n En  C Z, j,l  2 n  2 j +1 4n  ν  j +1/ 2 

(note: atomic units different)

(Zα )2 ∆ ≅ E n n ν ( j +1/ 2)

with: En is the Rydberg energy scaling ν is effective quantum number

In many cases: C(Z, j,l) ≅ 0.6

These effects separate light atoms (low Z) from heavy atoms (high Z)

Lecture Notes Fundamental Constants 2015; W. Ubachs Many Multiplet Method

Dependence of the energy levels on α: (two values for different times)

Advantages of MM-Method: in simplified form: 1) Many atoms can be “used” simultaneously

2 2) Transition frequencies can be used  α  (not just splittings) with: x =   αlab  3) Combine heavy and light atoms

“q” given in frequency/energy units

Lecture Notes Fundamental Constants 2015; W. Ubachs Results

All allowed E1 transitions

Negative signs for: d→p and p→s

Lecture Notes Fundamental Constants 2015; W. Ubachs Quasar Lines

Lecture Notes Fundamental Constants 2015; W. Ubachs  1  T = T0 1− 3/ 2   (1+ z) 

Lecture Notes Fundamental Constants 2015; W. Ubachs Quasar“Quasar absorption Absorptie spectra Spectra”

Quasar

To Earth

Lyαem α SiII CIV Lyman limit Lyβ Ly SiII CII SiIV

Lyβem NVem

CIVem SiIVem

Lecture Notes Fundamental Constants 2015; W. Ubachs On weak and strong lines

E2

E2 − E1 = hν Cuν A Buν

E1

Einstein coefficients Dipole strength Lifetime Heisenberg uncertainty

C = B 2 πe 2 1 1 B = µ τ = Γ = A 8πhν 3 2 ij = 3ε0 A 2πτ B c3

Strong lines  broadened Weak lines  narrow

Lecture Notes Fundamental Constants 2015; W. Ubachs Similar calculations for “laboratory lines”

Clock transitions

Ion traps Optical lattice clock

Lecture Notes Fundamental Constants 2015; W. Ubachs “Accidental degeneracies”

Level A: q/(hc)= 6x103 cm-1 Level B: q/(hc)= -24x103 cm-1

Dy ∆q~ 30x 103 cm-1 ~ 9x105 GHz

2 atom α  α  δν = ∆q  = 2∆q  α  α  α  =1.8×1015  Hz α 

Look for “rate of change”

α    ~ 10−15 per year α 

δν =1.8Hz per year

τΑ=7.9 µs τΒ=200 µs ∆ν(A-B) ~ 235 MHz 4 -4 ΓA~ 2x10 Hz ; Line split~ 10 Precision ~ 10-8 Cingoz et al, Phys. Rev. Lett. 98, 040801 (2007) Lecture Notes Fundamental Constants 2015; W. Ubachs Modern Clock Comparisons

Further parametrization:

f = const ⋅ Ry ⋅ F(α ) Constraints from various experiments d ln f d ln Ry d lnα = + A⋅ dt dt dt d ln F A = d lnα

Lecture Notes Fundamental Constants 2015; W. Ubachs Cf: Peik, Nucl. Phys B Supp. 203 (2010) 18 Functional dependence on fundamental constants

Lecture Notes Fundamental Constants 2015; W. Ubachs