The Case of Adam Becker's What Is Real?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind. -
Concerning Stephen Hawking's Claim That Philosophy Is Dead1
Filozofski vestnik | Volume XXXIII | Number 2 | 2012 | 11–22 Graham Harman* Concerning Stephen Hawking’s Claim that Philosophy is Dead1 The relations at present between philosophy and the sciences are not especially good. Let’s begin with Stephen Hawking’s famous words at the May 2011 Google Zeitgeist conference in England:1 […] almost all of us must sometimes wonder: Why are we here? Where do we come from? Traditionally, these are questions for philosophy, but philosophy is dead. Philosophers have not kept up with modern developments in science. Particularly physics. Scientists have become the bearers of the torch of discovery in our quest for knowledge.2 According to Hawking, philosophy is dead. Others are more generous and claim only that philosophy will be dead in the near future, and only partly dead. For example, brain researcher Wolf Singer tells us that he is interested in philoso- phy for two reasons: !rst because “progress in neurobiology will provide some answers to the classic questions in philosophy,” and second because “progress in the neurosciences raises a large number of new ethical problems, and these need to be addressed not only by neurobiologists but also by representatives of the humanities.”3 In other words, Singer is interested in philosophy as a poten- tial takeover target for the neurosciences, though he reassures us that philoso- phers should not fear this ambition, since Singer still needs ethics panels that will “also” include representatives of the humanities alongside neurobiologists. 11 Having escaped its medieval status as the handmaid of theology, philosophy will enter a new era as the ethical handmaid of the hard sciences. -
Multi-Dimensional Entanglement Transport Through Single-Mode Fibre
Multi-dimensional entanglement transport through single-mode fibre Jun Liu,1, ∗ Isaac Nape,2, ∗ Qianke Wang,1 Adam Vall´es,2 Jian Wang,1 and Andrew Forbes2 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. 2School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa (Dated: April 8, 2019) The global quantum network requires the distribution of entangled states over long distances, with significant advances already demonstrated using entangled polarisation states, reaching approxi- mately 1200 km in free space and 100 km in optical fibre. Packing more information into each photon requires Hilbert spaces with higher dimensionality, for example, that of spatial modes of light. However spatial mode entanglement transport requires custom multimode fibre and is lim- ited by decoherence induced mode coupling. Here we transport multi-dimensional entangled states down conventional single-mode fibre (SMF). We achieve this by entangling the spin-orbit degrees of freedom of a bi-photon pair, passing the polarisation (spin) photon down the SMF while ac- cessing multi-dimensional orbital angular momentum (orbital) subspaces with the other. We show high fidelity hybrid entanglement preservation down 250 m of SMF across multiple 2 × 2 dimen- sions, demonstrating quantum key distribution protocols, quantum state tomographies and quantum erasers. This work offers an alternative approach to spatial mode entanglement transport that fa- cilitates deployment in legacy networks across conventional fibre. Entanglement is an intriguing aspect of quantum me- chanics with well-known quantum paradoxes such as those of Einstein-Podolsky-Rosen (EPR) [1], Hardy [2], and Leggett [3]. -
Questions in Quantum Physics: a Personal View
Questions in quantum physics: a personal view Rudolf Haag Waldschmidtstraße 4b, D–83727 Schliersee-Neuhaus, Germany Abstract An assessment of the present status of the theory, some immediate tasks which are suggested thereby and some questions whose answers may require a longer breath since they relate to significant changes in the conceptual and mathematical structure of the theory. 1 Introduction Personal views are shaped by past experiences and so it may be worth while pondering a little about accidental circumstances which channelled the course of one’s own thinking. Meeting the right person at the right time, stumbling across a book or article which suddenly opens a new window. Fifty years ago, as eager students at Munich University just entering the phase of our own scientific research, we were studying the enormous papers by Julian Schwinger on Quantum Electrodynamics, following the arguments line by line but not really grasping the message. I remember the feelings of frustration, realizing that we were far away from the centers of action. But, mixed with this, also some dismay which did not only refer to the enormous arsenal of formalism in the new arXiv:hep-th/0001006v1 3 Jan 2000 developments of QED but began with the standard presentation of the interpretation of Quantum Theory. I remember long discussions with my thesis advisor Fritz Bopp, often while circling some blocks of streets ten times late in the evening, where we looked in vain for some reality behind the enigma of wave-particle dualism. Why should physical quantities correspond to operators in Hilbert space? Why should probabilities be described as absolute squares of amplitudes?, etc., etc. -
From Algebraic Quantum Field Theory to Effective Quantum Gravity
Algebraic approach to QFT Quantum gravity Locality and beyond: from algebraic quantum field theory to effective quantum gravity Kasia Rejzner University of York Local Quantum Physics and beyond in memoriam Rudolf Haag, 26.09.2016 Kasia Rejzner Locality and beyond 1 / 26 Algebraic approach to QFT Quantum gravity Outline of the talk 1 Algebraic approach to QFT AQFT LCQFT pAQFT 2 Quantum gravity Effective quantum gravity Observables The author of a beautiful book Local Quantum Physics. One of the fathers of LQP. We will all miss him. AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). Kasia Rejzner Locality and beyond 2 / 26 One of the fathers of LQP. We will all miss him. AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). The author of a beautiful book Local Quantum Physics. Kasia Rejzner Locality and beyond 2 / 26 We will all miss him. AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). The author of a beautiful book Local Quantum Physics. One of the fathers of LQP. Kasia Rejzner Locality and beyond 2 / 26 AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). The author of a beautiful book Local Quantum Physics. One of the fathers of LQP. We will all miss him. Kasia Rejzner Locality and beyond 2 / 26 It started as the axiomatic framework of Haag-Kastler[ Haag & Kastler 64]: a model is defined by associating to each region O of Minkowski spacetime the algebra A(O) of observables that can be measured in O. -
Quantum Computing
International Journal of Information Science and System, 2018, 6(1): 21-27 International Journal of Information Science and System ISSN: 2168-5754 Journal homepage: www.ModernScientificPress.com/Journals/IJINFOSCI.aspx Florida, USA Article Quantum Computing Adfar Majid*, Habron Rasheed Department of Electrical Engineering, SSM College of Engineering & Technology, Parihaspora, Pattan, J&K, India, 193121 * Author to whom correspondence should be addressed; E-Mail: [email protected] . Article history: Received 26 September 2018, Revised 2 November 2018, Accepted 10 November 2018, Published 21 November 2018 Abstract: Quantum Computing employs quantum phenomenon such as superposition and entanglement for computing. A quantum computer is a device that physically realizes such computing technique. They are different from ordinary digital electronic computers based on transistors that are vastly used today in a sense that common digital computing requires the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), whereas quantum computation uses quantum bits, which can be in superposition of states. The field of quantum computing was initiated by the work of Paul Benioff and Yuri Manin in 1980, Richard Feynman in 1982, and David Deutsch in 1985. Quantum computers are incredibly powerful machines that take this new approach to processing information. As such they exploit complex and fascinating laws of nature that are always there, but usually remain hidden from view. By harnessing such natural behavior (of qubits), quantum computing can run new, complex algorithms to process information more holistically. They may one day lead to revolutionary breakthroughs in materials and drug discovery, the optimization of complex manmade systems, and artificial intelligence. -
Physics Nobel Prize 1975
Physics Nobel Prize 1975 Nobel prize winners, left to right, A. Bohr, B. Mottelson and J. Rainwater. 0. Kofoed-Hansen (Photos Keystone Press, Photopress) Before 1949 every physicist knew that mooted, it was a major breakthrough from 1943-45. From December 1943 the atomic nucleus does not rotate. in thinking about the nucleus and he was actually in the USA. Back in The reasoning behind this erroneous opened a whole new field of research Denmark after the war, he obtained belief came from the following argu• in nuclear physics. This work has for his Ph. D. in 1954 for work on rota• ments. A quantum-mechanical rotator years been guided by the inspiration tional states in atomic nuclei. His with the moment of inertia J can take of Bohr and Mottelson. thesis was thus based on the work for up various energy levels with rota• An entire industry of nuclear which he has now been recognized at tional energies equal to h2(l + 1)| research thus began with Rainwater's the very highest level. He is Professor /8TC2J, where h is Planck's constant brief contribution to Physical Review at the Niels Bohr Institute of the ^nd I is the spin. As an example, I may in 1950 entitled 'Nuclear energy level University of Copenhagen and a nave values 0, 2, 4, ... etc. If the argument for a spheroidal nuclear member of the CERN Scientific Policy nucleus is considered as a rigid body, model'. Today a fair-sized library is Committee. then the moment of inertia J is very needed in order to contain all the Ben Mottelson was born in the USA large and the rotational energies papers written on deformed nuclei and in 1926 and has, for many years, become correspondingly very small. -
Grete Hermann on Von Neumann's No-Hidden-Variables Proof
Challenging the gospel: Grete Hermann on von Neumann’s no-hidden-variables proof M.P Seevinck ∞ ∞ Radboud University University, Nijmegen, The Netherlands May 2012 1 Preliminary ∞ ∞ In 1932 John von Neumann had published in his celebrated book on the Mathematische Grundlagen der Quantenmechanik, a proof of the impossibility of theories which, by using the so- called hidden variables, attempt to give a deterministic explana- tion of quantum mechanical behaviors. ◮ Von Neumann’s proof was sort of holy: ‘The truth, however, happens to be that for decades nobody spoke up against von Neumann’s arguments, and that his con- clusions were quoted by some as the gospel.’ (F. J. Belinfante, 1973) 2 ◮ In 1935 Grete Hermann challenged this gospel by criticizing the von Neumann proof on a fundamental point. This was however not widely known and her criticism had no impact whatsoever. ◮ 30 years later John Bell gave a similar critique, that did have great foundational impact. 3 Outline ∞ ∞ 1. Von Neumann’s 1932 no hidden variable proof 2. The reception of this proof + John Bell’s 1966 criticism 3. Grete Hermann’s critique (1935) on von Neu- mann’s argument 4. Comparison to Bell’s criticism 5. The reception of Hermann’s criticism 4 Von Neumann’s 1932 no hidden variable argument ∞ ∞ Von Neumann: What reasons can be given for the dispersion found in some quantum ensembles? (Case I): The individual systems differ in additional parameters, which are not known to us, whose values de- termine precise outcomes of measurements. = deterministic hidden variables ⇒ (Case II): ‘All individual systems are in the same state, but the laws of nature are not causal’. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
Quantum Theory Needs No 'Interpretation'
Quantum Theory Needs No ‘Interpretation’ But ‘Theoretical Formal-Conceptual Unity’ (Or: Escaping Adán Cabello’s “Map of Madness” With the Help of David Deutsch’s Explanations) Christian de Ronde∗ Philosophy Institute Dr. A. Korn, Buenos Aires University - CONICET Engineering Institute - National University Arturo Jauretche, Argentina Federal University of Santa Catarina, Brazil. Center Leo Apostel fot Interdisciplinary Studies, Brussels Free University, Belgium Abstract In the year 2000, in a paper titled Quantum Theory Needs No ‘Interpretation’, Chris Fuchs and Asher Peres presented a series of instrumentalist arguments against the role played by ‘interpretations’ in QM. Since then —quite regardless of the publication of this paper— the number of interpretations has experienced a continuous growth constituting what Adán Cabello has characterized as a “map of madness”. In this work, we discuss the reasons behind this dangerous fragmentation in understanding and provide new arguments against the need of interpretations in QM which —opposite to those of Fuchs and Peres— are derived from a representational realist understanding of theories —grounded in the writings of Einstein, Heisenberg and Pauli. Furthermore, we will argue that there are reasons to believe that the creation of ‘interpretations’ for the theory of quanta has functioned as a trap designed by anti-realists in order to imprison realists in a labyrinth with no exit. Taking as a standpoint the critical analysis by David Deutsch to the anti-realist understanding of physics, we attempt to address the references and roles played by ‘theory’ and ‘observation’. In this respect, we will argue that the key to escape the anti-realist trap of interpretation is to recognize that —as Einstein told Heisenberg almost one century ago— it is only the theory which can tell you what can be observed. -
Marcel Grossmann Awards
MG15 MARCEL GROSSMANN AWARDS ROME 2018 ICRANet and ICRA MG XV MARCEL GROSSMANN AWARDS ROME 2018 and TEST The 15th Marcel Grossmann Meeting – MG XV 2nd July 2018, Rome (Italy) Aula Magna – University “Sapienza” of Rome Institutional Awards Goes to: PLANCK SCIENTIFIC COLLABORATION (ESA) “for obtaining important constraints on the models of inflationary stage of the Universe and level of primordial non-Gaussianity; measuring with unprecedented sensitivity gravitational lensing of Cosmic Microwave Background fluctuations by large-scale structure of the Universe and corresponding B- polarization of CMB, the imprint on the CMB of hot gas in galaxy clusters; getting unique information about the time of reionization of our Universe and distribution and properties of the dust and magnetic fields in our Galaxy” - presented to Jean-Loup Puget, the Principal Investigator of the High Frequency Instrument (HFI) HANSEN EXPERIMENTAL PHYSICS LABORATORY AT STANFORD UNIVERSITY “to HEPL for having developed interdepartmental activities at Stanford University at the frontier of fundamental physics, astrophysics and technology” - presented to Research Professor Leo Hollberg, HEPL Assistant Director Individual Awards Goes to LYMAN PAGE “for his collaboration with David Wilkinson in realizing the NASA Explorer WMAP mission and as founding director of the Atacama Cosmology Telescope” Goes to RASHID ALIEVICH SUNYAEV “for the development of theoretical tools in the scrutinising, through the CMB, of the first observable electromagnetic appearance of our Universe” Goes to SHING-TUNG YAU “for the proof of the positivity of total mass in the theory of general relativity and perfecting as well the concept of quasi-local mass, for his proof of the Calabi conjecture, for his continuous inspiring role in the study of black holes physics” Each recipient is presented with a silver casting of the TEST sculpture by the artist A. -
1 WKB Wavefunctions for Simple Harmonics Masatsugu
WKB wavefunctions for simple harmonics Masatsugu Sei Suzuki Department of Physics, SUNY at Binmghamton (Date: November 19, 2011) _________________________________________________________________________ Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in Ascona, Switzerland) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel– Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. http://en.wikipedia.org/wiki/Gregor_Wentzel _________________________________________________________________________ Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 24, 1952) was a Dutch physicist. http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers _________________________________________________________________________ Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere, solid state physics, and information theory. http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin _______________________________________________________________________ 1. Determination of wave functions using the WKB Approximation 1 In order to determine the eave function of the simple harmonics, we use the connection formula of the WKB approximation. V x E III II I x b O a The potential energy is expressed by 1 V (x) m 2 x 2 . 2 0 The x-coordinates a and b (the classical turning points) are obtained as 2 2 a 2 , b 2 , m0 m0 from the equation 1 V (x) m 2 x2 , 2 0 or 1 1 m 2a 2 m 2b2 , 2 0 2 0 where is the constant total energy. Here we apply the connection formula (I, upward) at x = a.